

Learning Vector Quatization in Footstep Identification

Jaakko Suutala Assistant Researcher e-mail: jaakko.suutala@ee.oulu.fi Susanna Pirttikangas, Jukka Riekki and Juha Röning

Intelligent Systems Group University of Oulu, Finland

Intelligent Systems Group Department of Electrical and Information Engineering and InfoTech Oulu www.ee.oulu.fi/research/neurogroup

LVQ in Foootstep Identification, AIA'03 – p.1/18

Outline

- Introduction
- Neurogroup
- EMFi Material
- Learning Vector Quantization Classification
- Data
- Test Results
- Conclusions

Neurogroup

Introduction

- What we have done ?
 - Experiments on recognizing walkers from the measurements achieved with a pressure sensitive floor
 - A 100 square meter pressure sensitive floor was used
 - Test classifications included footsteps from eleven walkers
- Methods
 - Identification made with Learning Vector Quantization
 - All the footsteps were extracted from raw data and featurized
 - Discarding a known error type overall 78 % successrate was achieved

Aim

Neurogroup

Introduction (2)

- A part of research on intelligent environments: to learn and to react to behaviour of occupants
 - Monitoring hazardous situations
 - Surveillance systems
 - Helping child care

EMFi Material

ElectroMechanical Film

- A thin, flexible, lowprice electret material
- Consists of cellular biaxially oriented polypropylene film coated with metal electrodes
- It is possible to store a large permanent charge in the film by corona method using electric fields
- An external force affecting on the EMFi's surface causes a change in the films thickness resulting a charge between the conductive metal layers
 - This charge can be detected as a voltage, which describes the changes in the pressure affecting the floor

Neurogroup

EMFi Material (2)

EMFi Floor

- In our research laboratory EMFi-material is placed under the normal flooring
- Consists 30 vertical and 34 horizontal EMFi- sensor stripes, 30 cm wide each
- Why not squares ?
 - Number of Wires

EMFi Material (3)

Intelligent Systems Group Department of Electrical and Information Engineering and InfoTech Oulu www.ee.oulu.fi/research/neurogroup

LVQ in Foootstep Identification, AIA'03 – p.7/18

EMFi Material (4)

EMFi Data

- Each 64 stripes produces continuous signal
- Streamed into a PC from where the data can be analysed in order to detect and recognize the pressure events
- The analogous signal is processed with National Instruments AD-card (PCI-6033E), sampling rate can be chosen between 0.1 - 64 kHz
 - 100 Hz sampling rate is used in these experiments

EMFi Material (5)

Raw data

Neurogroup

Infotech Oulu

www.ee.oulu.fi/research/neurogroup

LVQ in Foootstep Identification, AIA'03 - p.9/18

LVQ Classification

Learning Vector Quantization (LVQ)

- A well known statical classification method
- Based on piecewise linear class boundaries, which are determined by supervised learning
- LVQ classification
 - Classification is made with codebook, which contains prototype vectors labeled for each classes
 - Learning algorithm iteraratively minimizes the rate of misclassification error by updating the codebook vectors
 - Unknown sample is classified to the closest codebook vector using Euclidean distance

LVQ Classification(2)

- Learning Algorithms
 - LVQ1

(1)
$$m_j(t+1) = m_j(t) + \alpha(t)[c(t) - m_j(t)]$$

(2) $m_j(t+1) = m_j(t) - \alpha(t)[c(t) - m_j(t)]$

3)
$$m_i(t+1) = m_i(t)$$
, for $i \neq j$,

OLVQ1

(4) $m_j(t+1) = [1 - s(t)\alpha_j(t)]m_j(t) + s(t)\alpha_j(t)c(t)$

(5)
$$\alpha_j(t) = \frac{\alpha_j(t-1)}{1+s(t)\alpha_j(t-1)}$$

Intelligent Systems Group Department of Electrical and Information Engineering and InfoTech Oulu www.ee.oulu.fi/research/neurogroup

LVQ in Foootstep Identification, AIA'03 - p.11/18

Data

Collecting data

- Footsteps data was recorded from eleven different person
- The testees stepped on one particular stripe
- Collected data contained about 40 steps/person, including steps from both feet
- Pre-processing
 - Finding good-quality steps from noisy data
 - A raw segmentation was made with hybrid-median filters
 - Footstep parts from adjacent channels were summed

Neurogroup

Data (2)

Feature selection

- Each step was divided in two sections: The Ball and the heel of the footstep
- Several features was calculated from both spatial and frequency domain
- 13 features was selected for classification

Infotech Oulu

Intelligent Systems Group Department of Electrical and Information Engineering and InfoTech Oulu www.ee.oulu.fi/research/neurogroup

LVQ in Foootstep Identification, AIA'03 – p.13/18

Data (3)

Intelligent Systems Group Department of Electrical and Information Engineering and InfoTech Oulu www.ee.oulu.fi/research/neurogroup

LVQ in Foootstep Identification, AIA'03 - p.14/18

Data (4)

Infotech Oulu

LVQ in Foootstep Identification, AIA'03 - p.15/18

Neurogroup

Test Results

The best results

- Codebook size: about 5 prototype vectors/class
- Learning algorithms: OLVQ1 and LVQ1
- 2/3 of footsteps were used for training and 1/3 for testing
- 13 features was used
 - Normalized between 0 and 1
- The overall recognition accuracy was 67 %

Test Results (2)

Person	%
Person 1	84.62
Person 2	83.33
Person 3	33.33
Person 4	91.67
Person 5	69.23
Person 6	72.73
Person 7	25.00
Person 8	66.67
Person 9	90.00
Person 10	58.33
Person 11	66.67
Total accuracy	67.42

Conclutions

- Experiments on identifying persons based on their footsteps were reported
- Basic tools for using the EMFi-floor are developed
- Future plans
 - Developing methods for reconstruction of partial data from multiple sensors
 - Real-time learning and recognition application

