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ABSTRACT

This paper describes experiments on recognizing footstep
patterns from data produced by pressure-sensitive floor.
A 100 square meter pressure-sensitive floor (EMFi floor),
which is placed as a part of a smart living room, senses the
changes in the pressure against its surface and produces volt-
age signal of the event. Recognition of footstep patterns is
needed for data segmentation to be used in person tracking
and identification. We have used a method based on Seg-
mental Semi-Markov Models to detect footsteps from the
floor data. The experiments described in this paper show this
method to be a very powerful and robust tool for our partic-
ular application.

1. INTRODUCTION

The research on intelligent environments [1], [2], [3] aimsat
making smart houses, offices, tourist attractions etc., where
the environment learns and reacts to the behaviour of the oc-
cupants. The methodology can be applied in homes for the
elderly and disabled as an enabling technology for monitor-
ing hazardous situations as well as in surveillance systemsor
in helping in child care.

One fundamental problem that has risen in connection
with the development of these intelligent environments is
their ability to automatically determine and keep track of the
actual physical location and the identity of a person in in-
door environment. Several technologies have been presented
to address this problem, including camera-based systems,
WLAN-positioning, combined RF- and ultrasound sensing
systems, and force-sensing floor sensors based on load cells
[4]. Our approach to this indoor locationing problem is an
EMFi-based floor sensor, measuring pressure changes affect-
ing on it. In order the person tracking and identification [5],
[6] to work accurately, we need a technique to detect footstep
patterns from EMFi-data.

For this purpose, we have applied a method described in
[7] based on segmental semi-Markov models (SSMM), to de-
tect these patterns reliably. In this method, a Markov-based
piecewise linear model is constructed from a single exam-
ple pattern and then a Viterbi-like algorithm is used to detect
similar waveforms from EMFi-data. This paper concentrates
only on the experiments on detecting the footstep waveform
patterns and will not cover the issues of person tracking and
identification.

In the following sections of the paper, we begin by giving
general description of the EMFi-floor in Section 2. In Section
3 the pattern matching method based on SSMM is presented,
and Section 4 describes the experimental results when this
method is applied to EMFi-data.

Figure 1: Computer generated view of our research labora-
tory. EMFi-sensor stripes are illustrated on the floor.

2. EMFI FLOOR

ElectroMechanical Film [8] (EMFi) is a thin, flexible, low-
price electret material which consists of cellular, biaxially
oriented polypropylene film coated with metal electrodes. In
the EMFi manufacturing process, a special voided internal
structure is created in the polypropylene layer, which makes
it possible to store a large permanent charge in the film by the
corona method, using electric fields that exceed the dielectric
strength of EMFi. An external force affecting the EMFi sur-
face causes a change in the film’s thickness, resulting in a
change in the charge between the conductive metal layers.
This charge can then be detected as a voltage signal. EMFi
is a Finnish innovation and a trademark of EMFiTech Ltd.

EMFi material has been installed in the Intelligent Sys-
tems Group’s (ISG) research laboratory at the University of
Oulu. The EMFi floor in the ISG laboratory is constructed
of 30 vertical and 34 horizontal EMFi sensor stripes, 30 cm
wide and 10 meters long each, which are placed under the
normal flooring (see Figure 1). The stripes make up a 30x34
matrix with a cell size of 30x30 cm. Instead of simply in-
stalling squares of EMFi material under the flooring, stripes
were used because this layout requires clearly less signal
channels to be processed.

3. RECOGNITION OF FOOTSTEP PATTERNS

3.1 Overview

3.1.1 Data

On the left graph of Figure 2, a voltage signal from one
EMFi-channel with a footstep pattern in it is shown. The



waveform resulting from a footstep is clearly two-peaked,
the first resulting from heel strike and the second one from
toe push off. The EMFi-floor measure system is of a high-
pass type with the cutoff frequency around 1.5Hz.

The footstep pattern shown in Figure 2 appears when the
whole foot hits in the middle of the EMFi-stripe. Due to the
fact that the EMFi-stripes are only 30 cm wide, the majority
of the steps, in fact, hit in between two adjacent stripes result-
ing in one-peaked partial footstep patterns. This means that
for example the heel strike profile can appear in one chan-
nel and the toe push off profile in the one next to it. These
partial footstep patterns are poor material, especially for the
user identification purposes, so we needed a more robust tool
for footstep pattern recognition than just a simple amplitude
based thresholding techniques. Another main reason from
a data point of view for our method selection was the high-
pass nature of the EMFi-floor. This causes the fact that the
baseline of the EMFi-signal starts to fluctuate when several
consecutive footsteps hit on the same stripe (see Fig. 3). This
again makes simple signal amplitude based thresholding in-
adequate for footstep pattern detection.

3.1.2 Method Overview

In order the person tracking and identification to work prop-
erly with EMFi-floor, the footstep waveform patterns must
be segmented from raw data. A statistical pattern matching
method based on SSMM [7], [9] was chosen for our appli-
cation with some modifications made to the original algo-
rithms. The segmental semi-Markov model is an extension
to the standard Hidden Markov Model (HMM) [10].

These extensions include two major components: first,
explicit state duration distributions, and second, segmental
observation distributions. This means that unlike in a stan-
dard HMM, where a state generates a single observation
yt , a state in a SSMM generates a segment of observations
yt1 . . .yt2. The duration of this segment in time is modelled
by a specific distribution (for example Gaussian) with a mean
duration and some variability around that mean. In this seg-
ment observation model, the data generated by each state is
in the form of some regression curve,

yt = fi(t|θi)+et (1)

where fi(t|θi) is a state-dependent regression function with
parametersθi , andet is additive independent noise (usually
Gaussian).

With these extensions, the SSMM offers a very flexible
way to model waveforms. The state duration distributions
and segmental observation models bring the aspect ofshape
variability into the detection prosedure. This is very im-
portant in our application because, due to the nature of the
EMFi-sensor, the footstep waveforms vary quite strongly de-
pending on how do you hit your foot on the floor. This means
that it is almost an impossible task to build a specific footstep
pattern template for every kind of step.

When a footstep waveform is modeled with SSMM,
meaning a specifically ordered combination of individual ob-
servation segments, each segment having its own state pa-
rameters, a Viterbi-like algorithm described in [7] can be
used to detect similar waveforms in the data generated by
EMFi-sensor. The footstep pattern modeling and recognition
are described in more detail in the next two sections.
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Figure 2: Example footstep pattern (squared) and its piece-
wise linear representation consisting of five segments.

3.2 Modeling of Footstep Pattern

When constructing a model for footstep pattern, the first step
is to create a piecewise linear representation of the exam-
ple waveform. For this purpose, an optimal piecewise linear
segmentation algorithm (PLS) described in [9] was used. We
chose to use the algorithm where the number of segments,
K, is fixed. Slight modifications were done to the algorithm
to make it more suitable for our application. The main alter-
ation compared to the original PLS-algorithm was the defi-
nition of approximation error when fitting theK linear seg-
ments into the example waveform. Instead of minimizing the
single maximum difference between a sample in the exam-
ple pattern and a corresponding point on the approximating
linear segment we chose to minimize the sum of these dif-
ferences for each segment. This gave better piecewise linear
approximation results, especially when the number of seg-
mentsK was small (less than 6). On the right graph of Figure
2, a piecewise linear representation of the example footstep
pattern can be seen.

From this piecewise linear representation, aK-state seg-
mental semi-Markov model is constructed. Each state in the
model corresponds to one segment in the piecewise linear
representation of the example waveform. The state transition
matrix A for the model will be left-to-right, in other words,
Ai,i+1 = 1, Ai, j = 0 if j 6= i + 1 andAi, j is the probability of
going to statej given that the process is in statei. The initial
state distribution isπ = [1,0, . . . ,0]. The output probability
distribution of statei is now

p(ym+1ym+2 . . .ym+di |si) =

p(di|si)p(θi |si)
m+di

∏
t=m+1

p(yt | fi(θi ,t)), (2)

where the state-dependent regression function for this model
is a linear functionfi(θi ,t) = bit + ci . The statei’s regres-
sion parameters include nowbi andci , but the interceptci is
ignored in the model and allowed to be freely fit during the
detection process, allowing shifting in amplitude range. So
the only regression parameter left in the model isbi , which
is the slope of thei’th segment in the piecewise linear repre-
sentation.p(di |si) is the state duration distribution for state
i. It’s a truncated Gaussian distribution with meanl i which



is set to be the actual duration in time ofi’th segment in the
piecewise linear model. The standard deviation forp(di |si)
was set to bel i ×k%, where the value ofk was set based on a
prior knowledge of the waveform to be modeled. Segmental
observation distributionp(yt | fi(θi ,t)) is Gaussian distribu-
tion with meanfi(θi ,t) and additive noise varianceσ2

y . σ2
y is

calculated for each segment separately as the mean squared
error when the segments from the piecewise linear represen-
tation are compared against the original example data.

The original method described in [7] contains apre-
pattern and apost-patternas garbage states in the model,
which are used to model the data before and after the
matched pattern. These extra states can be used to match
the pattern in interest against the whole time series directly.
In our application, only a short noise state was added to the
model to appear before the actual footstep pattern. With this
modification the starting point of the footstep pattern was
more accurately detected. The duration of the noise state
was set to be five time units and the regression parameter
(the slope of the noise segment) was set to be zero. The vari-
ance for this pre-pattern state was set to be the actual noise
variance of the raw EMFi-signal.

3.3 Footstep Pattern Matching

After the model has been created, the actual pattern matching
starts with measuring the sum of cubed samples in a small
sliding window (size of 5) from the incoming signal. The
goal is to detect occurences of possible pressure events on the
floor. Because of the zero-average nature of EMFi-signal, the
summing process effectively filters the noise in the channel,
and with the fixed threshold it is possible to detect the start
time of an event. In addition to this thresholding, a rough
estimate of signals trend is also computed for samples inside
the window. This means simply calculating the slope of a
line fitted to the data points in the sliding window. If the
signal is at rise when the threshold limit is crossed, then the
actual pattern matching is started.

First a short pre-pattern state is used to find the exact
starting point of the pressure event. At each time unit, re-
gression functions of each state are matched to find the most
likely one. If the whole state sequence can be found in a
right order from the time series, the matched pattern has been
found. On the other hand, if the last state is not reached in the
state sequence within a particular time limit, pattern match-
ing is aborted. In both cases, the detection of the pressure
changes is then started again.

Footstep pattern matching is based on finding the most
likely state sequence in the segmental modelŝ = s1s2 . . .st . . .

for a data sequencey = y1y2 . . .yt . . .. After the footstep
model is constructed, as presented in previous section, the
most likely state sequence can be determined using a recur-
sive Viterbi-like algorithm.

The quantity probability ˆp(t)
i is calculated for each statei

in the model, at each timet, and recorded in a table. ˆp(t)
i is

the likelihood of the most likely state sequence that ends with

statei. The recursive function for calculating ˆp(t)
i is defined

as

p̂(t)
i = max

di

(

max
j

p̂(t−di)
j A ji

)

p(di)p(yt−di+1 . . .yt |θi), (3)

whereyt is the last point of segmenti. di is duration andp(di)
is its probability of statei in the model. The last point of the
previous segment will bet − di . A ji is the state transition
matrix andp(yt−di+1 . . .yt |θi) is the probability of fitting the
statei’s regression function to an given sequence of samples.
For a givendi, the inner maximization (maxj ) calculates over
all possible previous statesj that transition to statei at time
t − di. The outer maximization (maxdi ) is over all possible
values of the durationdi of statei. The statej and time du-

ration t − di for the maximum value of ˆp(t)
i are recorded in

table.
Finally, the most likely state sequence for the given data

sequencey1y2 . . .yt is back tracked from the table. It is the

state sequence with the likelihood maxi p̂(t)
i and is considered

as optimal in a maximum likelihood sense to describe the
state-sequence against the observed data.

In the Viterbi-like algorithm which is used to calculate
the most likely state sequence for the observed data se-
quence, we chose to calculate the actual Viterbi decoding part
only when the last state (Kth state) in the model appears to be
the most likely one. In the original algorithm, the Viterbi de-
coding was done at every time instant regardless of the state
that appeared as the most likely one. This modification made
the pattern matching algorithm work faster.

4. EXPERIMENTAL RESULTS

4.1 System Implementation

Each of the 64 EMFi-stripes in the floor produces a contin-
uous signal that is sampled at a rate of 100Hz and streamed
into a PC from where the data can be analyzed in order to
detect and recognize the pressure events, such as footsteps,
affecting the floor. The analogous signal is processed with
a National Instruments AD card, PCI-6033E, which contains
an amplifier. It would be possible to increase the sampling
frequency up to 1.56kHz, but 100Hz was considered ade-
quate for this application.

The SSMM-based footstep pattern recognition system
described in this paper was implemented using MATLAB
programming language. The system works off-line, meaning
that the EMFi-data is first streamed in a file and then pro-
cessed from there with MATLAB (Product of MathWorks
Inc.). We chose MATLAB programming environment for
the first phase of the system implementation because it of-
fers very powerful in-built tools for data visualization and
statistical calculations and the code is fast to write and easily
modified. A real-time recognition system also is being devel-
oped at the moment based on the MATLAB-implementation.
This is done with C++-programming language.

4.2 Recognition Results

The experimental results show that the SSMM-based foot-
step pattern recognition application we implemented works
very well on the EMFi-floor data. In Figure 3, all three
footstep patterns are succesfully detected (the solid linein-
dicates the start point and the dashed line the end point of the
steps). When we look at the detected waveforms in Figure 3,
the allowed shape variability is obvious. All three detected
footstep patterns are different variations of the created model
within the limits of the models parameters. The model used
for this test run is the one presented in Figure 2. It has five
states and the state durations (segment lengths in time) areal-



lowed to have 30% variability around the mean values of the
durations, meaning that the standard deviation of the statedu-
ration distributions isl i × k%, wherel i is the mean duration
of statei.

With these two main parameters (number of states in the
model and the standard deviation of the state duration distri-
butions), our footstep pattern matching application is easily
adjustable to detect different kinds of footstep profiles. For
example if we only want to determine the location of a person
walking on the EMFi-floor, the model we create from some
example waveform can be quite general. This means that the
number of states is set to be small (less than six), and the stan-
dard deviation of the models state duration distributions is set
to be large (k is for example 30% or even greater). We could
even build several footstep models to detect both partial and
whole footstep patterns, described in section 3.1.1, because
in the only-tracking scheme the partial and whole footstep
profiles provide equally significant information about walk-
ers location.

On the other hand, when we use the detected footstep
patterns for person identification, the waveforms should be
as good as possible, meaning that whole foot has hit in the
middle of one EMFi-stripe. In this case, the model created
for the pattern matching must be more selective. In our ex-
periments, we found that for person identification purposes
the number of states in the model should be at least five or
more, and the value ofk should be set to 15% or less. When
we dropped value ofk from 30 to 10 in the model creation,
only the first footstep pattern in Figure 3 was detected be-
cause its shape is closest to the created model.

It should also be mentioned that even though the number
of states is the other parameter given in the model creation,
the actual parameter used in the detection procedure it effects
on is the noise variance in the segmental observation distri-
butions. This is because these segmental noise variances are
calculated as the mean squared error when the linear seg-
ments of the model are fitted into the example waveform, as
described in section 3.2. This means that the less states in
the model, the larger the values of the noise variances in the
segmental observation distributions are, allowing largervari-
ability in the slope of the linear regression functions thateach
state generates. The effect of the other parameter, standard
deviation of the state duration distributions, is quite straight-
forward, because it simply defines the allowed lengths (in
time) of the linear segments that are fitted in to the data with
certain probability assosiated with them.

With these few examples presented, the strengths of this
particular pattern mathching method are obvious when it is
applied to the EMFi-data. The important aspect of shape
variability was brought to the footstep detection procedure
and a prior knowledge about the waveform in interest can
be easily incorporated to the model creation with parameters
described above. In our experiments, the system has proven
very reliable and accurate, and we have been able to over-
come many of the difficulties that previously appeared with
some simple thresholding based detection techniques.
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Figure 3: Three footstep patterns succesfully detected. Shape
variability allowed by the SSMM-method can be clearly seen
in the detected waveforms.
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