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ABSTRACT

This paper describes experiments on recognizing footstep
patterns from data produced by pressure-sensitive floor.
A 100 square meter pressure-sensitive floor (EMFi floor),
which is placed as a part of a smart living room, senses the
changesin the pressure against its surface and produdes vol
age signal of the event. Recognition of footstep patterns is
needed for data segmentation to be used in person tracking
and identification. We have used a method based on Seg-
mental Semi-Markov Models to detect footsteps from the
floor data. The experiments described in this paper show this
method to be a very powerful and robust tool for our partic-
ular application.

1. INTRODUCTION Figure 1: Computer generated view of our research labora-

The research on intelligent environments [1], [2], [3] aiats tory. EMFi-sensor stripes are illustrated on the floor.

making smart houses, offices, tourist attractions etc. revhe
the environment learns and reacts to the behaviour of the oc-
cupants. The methodology can be applied in homes for the 2. EMFI FLOOR
elderly and disabled as an enabling technology for monitor- . ) . . .
ing hazardous situations as well as in surveillance systems ElectroMechanical Film [8] (EMFi) is a thin, flexible, low-
in helping in child care. price electret material which consists of cellular, bidyia
One fundamental problem that has risen in connectiofiented polypropylene film coated with metal electrodes. |
with the development of these intelligent environments ighe EMFi manufacturing process, a special voided internal
their ability to automatically determine and keep trackheft ~ Structure is created in the polypropylene layer, which rsake
actual physical location and the identity of a person in in-t Possible to store a large permanent charge in the film by the
door environment. Several technologies have been presentgorona method, using electric fields that exceed the digtect
to address this problem, including camera-based systemgrength of EMFi. An external force affecting the EMFi sur-
WLAN-positioning, combined RF- and ultrasound sensingf@ceé causes a change in the film's thickness, resulting in a
systems, and force-sensing floor sensors based on load cefl3nge in the charge between the conductive metal layers.
[4]. Our approach to this indoor locationing problem is anhis charge can then be detected as a voltage signal. EMFi
EMFi-based floor sensor, measuring pressure changes-affet§ @ Finnish innovation and a trademark of EMFiTech Ltd.
ing on it. In order the person tracking and identification [5] EMFi material has been installed in the Intelligent Sys-
[6] to work accurately, we need a technique to detect foptste!€Ms Group’s (ISG) research laboratory at the University of
patterns from EMFi-data. ulu. The EMFi floor in the ISG laboratory is constructed
For this purpose, we have applied a method described ipf 30 vertical and 34 horizontal EMFi sensor stripes, 30 cm
[7] based on segmental semi-Markov models (SSMM), to deide and 10 meters long each, which are placed under the
tect these patterns reliably. In this method, a Markov-basenormal flooring (see Figure 1). The stripes make up a 30x34
piecewise linear model is constructed from a single examMalrix with a cell size of 30x30 cm. Instead of simply in-
ple pattern and then a Viterbi-like algorithm is used to dete Stalling squares of EMFi material under the flooring, ssipe
similar waveforms from EMFi-data. This paper concentrated/€ré used because this layout requires clearly less signal
only on the experiments on detecting the footstep waveforrfii@nnels to be processed.
patterns and will not cover the issues of person tracking and
identification. 3. RECOGNITION OF FOOTSTEP PATTERNS
In the following sections of the paper, we begin by giving3.1 Overview
general description of the EMFi-floor in Section 2. In Sectio
3 the pattern matching method based on SSMM is presente?l',l'1 Data
and Section 4 describes the experimental results when th@n the left graph of Figure 2, a voltage signal from one
method is applied to EMFi-data. EMFi-channel with a footstep pattern in it is shown. The



Example footstep pattern Piecewise linear model

waveform resulting from a footstep is clearly two-peaked,
the first resulting from heel strike and the second one from
toe push off. The EMFi-floor measure system is of a high-
pass type with the cutoff frequency around 1.5Hz.

The footstep pattern shown in Figure 2 appears when the
whole foot hits in the middle of the EMFi-stripe. Due to the
fact that the EMFi-stripes are only 30 cm wide, the majority
of the steps, in fact, hit in between two adjacent stripesltes
ing in one-peaked partial footstep patterns. This mears tha
for example the heel strike profile can appear in one chan-
nel and the toe push off profile in the one next to it. These
partial footstep patterns are poor material, especialyie
user identification purposes, so we needed a more robust tool
for footstep pattern recognition than just a simple amgktu L : : T
based thresholding techniques. Another main reason from Time(eeo) Time(eee)

a data point of view for our method selection was the high-_. o
pass nature of the EMFi-floor. This causes the fact that thEigure 2: Example footstep pattern (squared) and its piece-
baseline of the EMFi-signal starts to fluctuate when severaVise linear representation consisting of five segments.
consecutive footsteps hit on the same stripe (see Fig. 33. Th

again makes simple signal amplitude based thresholding in-

adequate for footstep pattern detection. 3.2 Modeling of Footstep Pattern

. When constructing a model for footstep pattern, the firg ste
3.1.2 Method Overview is to create a piecewise linear representation of the exam-
In order the person tracking and identification to work prop-sle waveform. For this purpose, an optimal piecewise linear
erly with EMFi-floor, the footstep waveform patterns mustsegmentation algorithm (PLS) described in [9] was used. We
be segmented from raw data. A statistical pattern matchinghose to use the algorithm where the number of segments,
method based on SSMM [7], [9] was chosen for our appliK, is fixed. Slight modifications were done to the algorithm
cation with some maodifications made to the original algo-to make it more suitable for our application. The main alter-
rithms. The segmental semi-Markov model is an extensioation compared to the original PLS-algorithm was the defi-
to the standard Hidden Markov Model (HMM) [10]. nition of approximation error when fitting the linear seg-
These extensions include two major components: firstnents into the example waveform. Instead of minimizing the
explicit state duration distributions, and second, segaien Single maximum difference between a sample in the exam-
observation distributions. This means that unlike in a-stanple pattern and a corresponding point on the approximating
dard HMM, where a state generates a single observatioinear segment we chose to minimize the sum of th_ese_dlf-
yi, a state in a SSMM generates a segment of observatiofgrences for each segment. This gave better piecewise linea
Vi --- Y- The duration of this segment in time is modelled approximation results, especially when the number of seg-
by a specific distribution (for example Gaussian) with a mearfnentsk was small (less than 6). On the right graph of Figure
duration and some variability around that mean. In this seg2, @ piecewise linear representation of the example fqotste
ment observation model, the data generated by each statefattern can be seen.
in the form of some regression curve, From this piecewise linear representatior -gtate seg-
mental semi-Markov model is constructed. Each state in the
vi = fi(t|6) +a 1) model corresponds to one segment in the piecewise linear
t= representation of the example waveform. The state transiti

wherefi(t|6) is a state-dependent regression function withmatrix A for the model will be left-to-right, in other words,

parameters, ande is additive independent noise (usually Ai+1 =1, Aij = 01if j #i+1andA; ; is the probability of
Gaussian). going to statg given that the process is in statelhe initial

With these extensions, the SSMM offers a very flexibleState distribution ist= [1,0,...,0]. The output probability

way to model waveforms. The state duration distributionéjIStrIbUtlon of state is now
and segmental observation models bring the aspeshae
variability into the detection prosedure. This is very im-
ortant in our application because, due to the nature of the
EM Fi-sensor, thge‘ootstep waveforms vary quite strongly de p(di/s)p(8is) |_| PO fi(6,1)), (2)
pending on how do you hit your foot on the floor. This means t=mil
that itis almost an impossible task to build a specific fagist where the state-dependent regression function for thiseinod
pattern template for every kind of step. is a linear functionf;(8,t) = bit + ¢i. The staté’s regres-
When a footstep waveform is modeled with SSMM, sion parameters include ndwandc;, but the intercept; is
meaning a specifically ordered combination of individual ob ignored in the model and allowed to be freely fit during the
servation segments, each segment having its own state pdetection process, allowing shifting in amplitude range. S
rameters, a Viterbi-like algorithm described in [7] can bethe only regression parameter left in the moddiswhich
used to detect similar waveforms in the data generated hig the slope of th&th segment in the piecewise linear repre-
EMFi-sensor. The footstep pattern modeling and recognitiosentation.p(di|s) is the state duration distribution for state
are described in more detail in the next two sections. i. It's a truncated Gaussian distribution with mdamwhich

Voltage
Voltage

P(Ymi1Ymi2---Ymiai|S) =
m-d;



is set to be the actual duration in timeith segment in the wherey; is the last point of segmentd; is duration and(d;)
piecewise linear model. The standard deviationg(di|s) is its probability of state in the model. The last point of the
was set to b x k%, where the value it was set based on a previous segment will bé—di. Aji is the state transition
prior knowledge of the waveform to be modeled. Segmentaiatrix andp(y;—q.+1.--Yt|6) is the probability of fitting the
observation distributiorp(y:| fi(6,t)) is Gaussian distribu- statei’s regression function to an given sequence of samples.
tion with meanf;(6,t) and additive noise varianeg’. o2is For a giverd;, the inner maximization (maxcalculates over
calculated for each segment separately as the mean squagddpossible previous statgsthat transition to stateat time
error when the segments from the piecewise linear represeh-di. The outer maximization (mgy is over all possible
tation are compared against the original example data. ~ values of the duratiod; of statei. The statej and time du-
The original method described in [7] containspee-  rationt — d; for the maximum value opi@ are recorded in
pattern and apost-patternas garbage states in the model,table.
which are used to model the data before and after the Finally, the most likely state sequence for the given data
matched pattern. These extra states can be used to matdyguencgnys, ...y is back tracked from the table. It is the
the pattern in interest against the whole time series djrect state sequence with the likelihood nﬂéw and is considered

In our application, only a short noise state was added to thgg optimal in a maximum likelihood sense to describe the
model to appear before the actual footstep pattern. With th'state-sequence against the observed data

modification the starting point of the footstep pattern was In the Viterbi-like algorithm which is used to calculate

more accurately detected. The duration of the noise stalg, o5t Jikely state sequence for the observed data se-
was set to be five time units and the regression paramet lience, we chose to calculate the actual Viterbi decodirtg pa

(the slope of the noise segment) was set to be zero. The vafy,; \yhen the last statéth state) in the model appears to be

ance for this pre-pattern state was set to be the actual NOI¥Fe’ most likely one. In the original algorithm, the Viterts-d
variance of the raw EMFi-signal. coding was done at every time instant regardless of the state
that appeared as the most likely one. This modification made

3.3 Footstep Pattern Matching the pattern matching algorithm work faster.
After the model has been created, the actual pattern matchin
starts with measuring the sum of cubed samples in a small 4. EXPERIMENTAL RESULTS

inding window (size of 5) from the. incoming signal. The 44 System | mplementation
goal is to detect occurences of possible pressure everttgon t o ) .
floor. Because of the zero-average nature of EMFi-signal, thEach of the 64 EMFi-stripes in the floor produces a contin-
summing process effectively filters the noise in the chgnneHous signal that is sampled at a rate of 100Hz and streamed
and with the fixed threshold it is possible to detect the starfito a PC from where the data can be analyzed in order to
time of an event. In addition to this thresholding, a roughdetect and recognize the pressure events, such as footsteps
estimate of signals trend is also computed for samplesénsicffecting the floor. The analogous signal is processed with
the window. This means simply calculating the slope of a& National Instruments AD card, PCI-6033E, which contains
line fitted to the data points in the sliding window. If the an amplifier. It would be possible to increase the sampling
signal is at rise when the threshold limit is crossed, then thfrequency up to B6kHz, but 100Hz was considered ade-
actual pattern matching is started. quate for this application. N

First a short pre-pattern state is used to find the exact 'he SSMM-based footstep pattern recognition system
starting point of the pressure event. At each time unit, redescribed in this paper was implemented using MATLAB
gression functions of each state are matched to find the moRfogramming language. The system works off-line, meaning
likely one. If the whole state sequence can be found in that the EMFi-data is first streamed in a file and then pro-
right order from the time series, the matched pattern has beéessed from there with MATLAB (Product of MathWorks
found. On the other hand, if the last state is not reacheckin thinc.). We chose MATLAB programming environment for
state sequence within a particular time limit, pattern matc the first phase of the system implementation because it of-
ing is aborted. In both cases, the detection of the pressuf&s very powerful in-built tools for data visualizationdan
changes is then started again. statistical calculations and the code is fast to write arsilea

Footstep pattern matching is based on finding the modpodified. Areal-time recognition system aIs_o is being deyel
likely state sequence in the segmental maédels;s, . .. ... opgad_ atthe moment based on the_ MATLAB-implementation.
for a data sequencg = yiys...V.... After the footstep NS iS done with C++-programming language.
model is constructed, as presented in previous section, the -
most likely state sequence can be determined using a recdt? Recognition Results
sive Viterbi-like algorithm. The experimental results show that the SSMM-based foot-

The quantity probabilit;pi(‘) is calculated for each state  Step pattern recognition application we implemented works
. . . (th: very well on the EMFi-floor data. In Figure 3, all three
in the model, at each tim and recorded in a tabley ™IS fotstep patterns are succesfully detected (the soliditine
the likelihood of the most likely state sequence thatends wi icates the start point and the dashed line the end poineof th
statei. The recursive function for calculatir;gft)“is defined steps). When we look at the detected waveforms in Figure 3,
as the allowed shape variability is obvious. All three detecte

footstep patterns are different variations of the createdeh

within the limits of the models parameters. The model used
At A(t—d for this test run is the one presented in Figure 2. It has five
pi< )= rrb?lx(mjaxpg )AJ") P(A)P(Ye-d+1---%[6); () states and the state durations (segment lengths in tima)-are



lowed to have 30% variability around the mean values of the
durations, meaning that the standard deviation of the dtate
ration distributions ig; x k%, wherel; is the mean duration
of statei. o0sf

With these two main parameters (number of states in the
model and the standard deviation of the state duration-distr
butions), our footstep pattern matching application islgas
adjustable to detect different kinds of footstep profilesr F
example if we only want to determine the location of a person °r
walking on the EMFi-floor, the model we create from some
example waveform can be quite general. This means that the
number of states is set to be small (less than six), and the sta 004l
dard deviation of the models state duration distributicreet
to be large K is for example 30% or even greater). We could % : : : Timesec) ‘ :
even build several footstep models to detect both partiél an

whole footstep patterns, described in section 3.1.1, B&aurigyre 3: Three footstep patterns succesfully detecteap&h

in the only-tracking scheme the partial and whole footsteRqyiapjlity allowed by the SSMM-method can be clearly seen
profiles provide equally significant information about walk i the detected waveforms.

ers location.

On the other hand, when we use the detected footstep
patterns for person identification, the waveforms should be
as good as possible, meaning that whole foot has hit in the

middle of one EMFi-stripe. In this case, the model created [1] I. A. Essa. Ubiquitous sensing for smart and aware en-
for the pattern matching must be more selective. In our ex-"" | i.onments: Technologies towards the building of an

periments, we found that for person identification purposes 5y are homelEEE Personal Communicatiop®ctober
the number of states in the model should be at least five or 5500 Special issue on networking the physical world.

more, and the value dfshould be set to 15% or less. When , . ) .
we dropped value df from 30 to 10 in the model creation, [2] MIT'S oxygen project.  http://oxygen.Ics.mit.edu/.
only the first footstep pattern in Figure 3 was detected be-  Available 07.11.2003.
cause its shape is closest to the created model. [3] Aware home. http://www.cc.gatech.edu/fce/ahri/.
It should also be mentioned that even though the number ~ Available 07.11.2003.
of states is the other parameter given in the model creation[4] J.Hightower and G.Borriello. Location systems for
the actual parameter used in the detection procedure disffe ubiquitous computing.|EEE Computer 34(8):57-66,
on is the noise variance in the segmental observation-distri August 2001.
butions. This is because these segmental noise variarees af5] s. Pirttikangas, J. Suutala, J. Riekki, and J. Roning.
calculated as the mean squared error when the linear seg- ~ [ earning vector quantization in footstep identification.
ments of the model are fitted into the example waveform,as |y M.H. Hamza, editor,Proc. 3rd IASTED Interna-
described in section 3.2. This means that the less states in  tjonal Conference on Attificial Intelligence and Ap-
the model, the larger the values of the noise variances in the  pjications (AIA 2003) pages 413-417, Benalmadena,
segmental observation distributions are, allowing lavgei Spain, September 8-10 2003. IASTED, ACTA Press.
abilty in the slope of the fineatr regressionfunctions #ath 6] . pirttikangas, J. Suutala, J. Riekki, and J. Roning.
generates. The effect of the other parameter, sthnda : g A . .
deviation of the state duration distributions, is quitaigfint- Footstep identification from pressure signals using Hid-
y den Markov Models. InProc. Finnish Signal Pro-

forward, because it simply defines the allowed lengths (in : ; , =
time) of the linear segments that are fitted in to the data with gg%%lng Symposium (FINSIG'OBRges 124-128, May

certain probability assosiated with them.
With these few examples presented, the strengths of thi47] X. Ge amd. P. Smyth. Deformable ”.‘arko" mod(_al tem-
plates for time-series pattern matching.Aroceedings

particular pattern mathching method are obvious when it is of the sixth ACM SIGKDD International Conference on

applied to the EMFi-data. The important aspect of shape " .
variability was brought to the footstep detection procedur KES‘S’;?‘;%%OD iscovery and Data Miningages 81-90,

and a prior knowledge about the waveform in interest can . o

be easily incorporated to the model creation with pararseter [8] M. Paajanen, J. Lekkala, and K. Kirjavainen. Elec-

described above. In our experiments, the system has proven tromechanical film (EMFi) - a new multipurpose elec-

very reliable and accurate, and we have been able to over- tret material.Sensors and actuators 84(1-2), August

come many of the difficulties that previously appeared with ~ 2000.

some simple thresholding based detection techniques. [9] X. Ge. Segmental Semi-Markov Models and Applica-
tions to Sequence Analysi®hD thesis, University of
California, Irvine, December 2002.

[10] L. R. Rabiner. A tutorial on hidden markov models and

This work was funded by TEKES and Academy of Finland. ~ Selected applications in speech recognitidtroceed-
We would like to thank Prof. Heikki Mannila for suggesting ings of the IEEEvo0I.77(2.):257-286, 1989.
the use of SSMM method in our application.
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