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ABSTRACT

This paper reports initial experiments on recognizing walk-
ers from measurements with a pressure-sensitive floor, more
specifically, a floor covered with EMFi material. A 100
square meter pressure-sensitive floor (EMFi floor) was re-
cently installed in the Intelligent Systems Group’s research
laboratory at the University of Oulu as part of a smart
living room. The floor senses the changes in the pres-
sure against its surface and produces voltage signals of
the event. The test set for footstep identification includes
EMFi data from 3 walkers. The testees walked casually
around the floor for 30 seconds, and the steps were ex-
tracted from the data and featurized. Identification was
made with discrete Hidden Markov Models. Although the
research is preliminary, the results show a 78 % overall
success rate of footstep identification and are hence very
promising.

1. INTRODUCTION

The research on intelligent environments [1], [2], [3] aims
at making smart houses, offices, tourist attractions etc.,
where the environment learns and reacts to the behaviour
of the occupants. The methodology can be applied in
homes for the elderly and disabled as an enabling tech-
nology for monitoring hazardous situtations as well as in
surveillance systems or in child care. Automatic recogni-
tion of the occupants without a need for wearable sensors
leads to personal profiling and enables smooth interaction
between the environment and the occupant.

In this paper, initial experiments on recognizing walk-
ers on a pressure-sensitive floor are described. In this
initial phase, discrete Hidden Markov Models were used
in the identification. The EMFi material installed under
the laboratory floor during the building stage was used in
making the measurements.

The idea of using footsteps to identify persons is not
new. Hidden Markov Models and Nearest-Neighbor clas-
sification have been used in recognizing walkers and ap-
plied in [4] and [5], respectively. The difference compared
to our research is the utilization of dissimilar sensors that
measure the vertical component of the ground reaction
force caused by the weight and inertial forces of the body.
Furthermore, the other studies have had only small areas

covered with sensors throughout the floor which is capa-
ble of measuring the steps, while we have the whole floor
area cabable of measurement.

In the next section, the EMFi material and the layout
of the testing area are introduced. In section 3, the basic
characteristics of Hidden Markov Models are presented.
The data set collected and the preprocessing are described
in section 4. The test results are presented in section 5.
Finally, some conclusions are drawn and future work is
clarified.

2. EMFI MATERIAL

ElectroMechanical Film [6] (EMFi) is a thin, flexible, low-
price electret material, which consists of cellular, biaxially
oriented polypropylene film coated with metal electrodes.
In the EMFi manufacturing process, a special voided in-
ternal structure is created in the polypropylene layer, which
makes it possible to store a large permanent charge in the
film by the corona method, using electric fields that ex-
ceed the dielectric strength of EMFi. An external force
affecting the EMFi surface causes a change in the film’s
thickness, resulting in a change in the charge between the
conductive metal layers. This charge can then be detected
as a voltage. EMFi is a Finnish innovation and a trade-
mark of EMFiTech Ltd.

EMFi material has been used for many commercial
applications, such as keyboards, microphones in stringed
musical instruments and small and large area sensors. A
Finnish company, Screentec Ltd, has developed vandal-
proof keyboards and keypads using EMFi foil protected
by a steel or plastic plate. EMF Acoustics Ltd has pro-
duced EMFi-based microphones for different stringed in-
struments, such as bass guitars, acoustic guitars and vio-
lins.

EMFi material has been installed in the Intelligent Sys-
tems Group’s (ISG) research laboratory at the University
of Oulu. The covered area is 100 square meters. The
EMFi floor in the ISG laboratory is constructed of 30 ver-
tical and 34 horizontal EMFi sensor stripes, 30 cm wide
each, that are placed under the normal flooring (see Fig-
ure 1). The stripes make up a 30x34 matrix with a cell
size of 30x30 cm. Instead of simply installing squares of
EMFi material under the flooring, stripes were used, be-
cause this layout requires clearly less wiring. If squares



Figure 1. The setting for EMFi sensor stripes under the
laboratory’s normal flooring.

were installed, the number of wires would be over a thou-
sand. If a smaller room were to be covered with EMFi
material, squares could be used. This would make it easier
to determine the locations of the occupants in the room.

Each of the 64 stripes produces a continuous signal
that is sampled at a rate of 100Hz and streamed into a PC,
from where the data can be analyzed in order to detect and
recognize the pressure events, such as footsteps, affecting
the floor. The analogous signal is processed with a Na-
tional Instruments AD card, PCI-6033E, which contains
an amplifier. It would be possible to increase the sampling
frequency up to

�������
kHz, but 100Hz was considered ade-

quate for this application.

3. HIDDEN MARKOV MODEL CLASSIFICATION

Hidden Markov Models (HMM) provide a natural way
for modelling time-dependent signals, and they have been
widely used for speech recognition [7]. Other applica-
tions concern context recognition [8] and robotics [9], for
example. Here, the theory of Hidden Markov Models is
described briefly, but a more extensive introduction can
be found in [10].

In HMM-based classification, it is assumed that the
observation sequence �	�
��������������� (to be classified)
is generated by a Markov model. A Markov model is a
finite-state machine, which changes its state once every
time unit. Each time � a state ��� is entered, a vector ��� is
generated from a certain probability distribution � . The
transition probabilities between the states and the output
probabilities determine the joint probability that � is gen-
erated by the model. In practice, only the observation
sequence is known, while the underlying state sequence
is hidden, which is why they are called Hidden Markov
Models.

There are different types of HMMs specified by the
possible connections between states. In an ergodic (fully
connected) HMM, every state of the model can be reached
from every other state. In many speech recognition appli-
cations, the left-right model [11], [12], depicted in Figure
2, is used. In a left-right HMM, the state index increases
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Figure 2. A 4-state left-right HMM.

or remains unchanged as time increases. This property
leads to a natural choice of left-right models for modelling
signals that change over time. Left-right HMMs are also
used in this paper.

Thus, a HMM is a probabilistic model and it can be
fully described by two model parameters ( � and � ), spec-
ification of observation symbols and three probability mea-
sures, � , � , and � . Generally, the notation  !�#"$�&%��'%(�*)
is used for a HMM. It should be noted that if the mod-
elled parameters are continuous, the observation distribu-
tion � within the HMM is continuous. In this paper, dis-
crete HMMs are used. Therefore, the observation symbol
density distribution � is discrete.

The model parameter � refers to the number of states
in the model; �+�#,-�.�-%/�0��% ����� %��0132 . The number of dis-
tinct observation symbols per state is � . This discrete
alphabet corresponds to the output of the system being
modeled. The alphabet can be generated by forming a
codebook with Learning Vector Quantization [13], for ex-
ample.

The probability distribution �4�5,7698:��2 is the state
transition probability distribution:

6;8����
<>= ?��A@.�B�
���DC ?E���
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where ?�� is the state at time � . In a left-right HMM, the
state transition coefficients have the property

6;8:���
MN%	K>O I %
which indicates that no transitions are permitted to states
whose indices are lower than the current state.

The observation symbol probability distribution in state� � is �P�Q,SR � "$TN)E2 , where

R � "UTN)V�W<>= X�Y at ��C ? � �Z� � FG% �[H K H �\% �]H T H � �
The initial state distribution is �^�_,7� 8 2 , where

� 8 �`<>= ? � �Z� 8 FG% �]HaIbH � �
When using a left-right HMM, the initial state probabili-
ties have the property
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Therefore, the state sequence is determined to start in state
1.

In the classification, one HMM is assigned for each
class, based on examples. Given an observation sequence�h�4� � � � ����i� � , the parameters  j�k"l�&%��'%i�*) are



determined to maximize <>"U�>C  �) . This can be done via
Baum-Welch estimation [14] (equal to the EM method
[15]) or by using gradient methods [7]. Here, Baum-Welch
estimation is used.

The observation sequence is obtained from the signals
via a codebook. The signals to be classified are featurized,
and the prototype vector that is nearest (in some optimal
sense) is assigned to the feature vector from the codebook.
The index of the prototype vector is the input for the dis-
crete HMM.

In determining the model’s distributions, it is essen-
tial to be able to choose an optimal state sequence � �?7� ?�������i?� corresponding to the given observation sequence.
In Baum-Welch estimation, the model parameters are given
initial values, and a maximum likelihood state sequence is
calculated (via the Viterbi algorithm [16], for example)
and it is used to improve the initial values. This process
is repeated until the estimated parameters for the model  
do not change. The details of Baum-Welch estimation are
beyond the scope of this paper.

In applying the models to classification, the probabil-
ity of the observation sequence � given the model, that
is, <>"$�>C  c) is calculated. This likelihood determines the
model from which the observation most likely came.

In Figure 3, footstep identification with HMMs is shown.
First, the observation sequences acquired from each per-
son’s steps are used for training the three models � � , � � ,
and ��� . Then, the unknown observation sequence is iden-
tified by defining the maximum likelihood for each model.
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Figure 3. Using HMMs for walker identification.

In this work, the HTK Toolkit version 3.2 [17] de-
veloped at the Speech Vision and Robotics Group of the
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Figure 4. Raw EMFi data from one stripe. The x-axis
represents time in seconds and the y-axis voltage.

Cambridge University Engineering Department, was used
for creating the codebook and the Hidden Markov Mod-
els.

4. DATA

The data were collected in the autumn 2002 and consist
of the measurements of 3 persons walking casually on the
pressure-sensitive floor. Each person walked alone around
the room for 30 seconds. The setting was made as natural
as possible. All the testees weighed 66 kg � 2 and wore
shoes.

During the test, all of the 64 EMFi stripes produce
noisy data (see Figure 4, which shows the data recorded
from one channel during the test). The footsteps must
be identified and segmentated from noisy channel data.
The segmentation problem is being studied in a different
project. The amplitude of a step is very large compared
to signal noise variance, and no filtering of the noise is
therefore needed.

Different problems arise in finding “good-quality” steps
for modelling. If a person steps on the crossing of two
stripes (see Figure 4; the last peak in the voltage signal),
the amplitude of the step is lower than if he stepped on the
centre of one stripe. This is natural, because only a small
part of the step hits on the particular stripe. Furthermore,
the amplitudes of steps in the neighborhood of the actual
measurement device are higher than those further away.

The problems mentioned earlier affect the selection of
the signal segmentation algorithm. In this initial phase,
raw segmentation was made with hybrid-median filters
[18], and the best footsteps were selected manually. The
data from three persons’ extracted footsteps are shown in
figure 5.

The data set was divided into a training set and a test
set in such a way that 50 % of the footsteps were used in
training the Hidden Markov Models for each person, and
the rest were used for testing the models.

The observation sequences from footsteps were aquired
using a window of width N and overlapping M, as in [4].
Different window widths and overlapping segments were
tested. The features obtained from each window were the
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Figure 5. The extracted footsteps of three persons.

mean, standard deviation, minimum and maximum of the
amplitude of the pressure signal. A codebook for these
observation sequences was formed with learning vector
quantization. Differents numbers of states and codebook
sizes were tested as well.

5. TEST RESULTS

The best initial results were obtained with a window width
of 15 and overlapping of 5. The number of nodes in the
HMM in this case was 6. The results are presented in
Table 1.

Person1 Person2 Person3
Person1 72.20 27.80 0.00
Person2 36.84 63.16 0.00
Person3 0.00 4.80 95.2

Table 1. Confusion matrix for three persons’ footsteps.

It can be seen that the footsteps of person number 3,
are most distinguishable. There is notable confusion in
the footsteps of the persons number 1 and 2, and iden-
tification is hence not realiable. The features chosen for
this experiment (mean, standard deviation, minimum and
maximum) do not capture the characteristics of the signals
adequately.

6. CONCLUSIONS

In this paper, the initial experiments on identifying per-
sons based on their footsteps on an EMFi floor were re-
ported. The results are very promising, but there are still
many unanswered questions. In this phase, the basic tools
for using the EMFi floor are being developed.

It is clear that the identification of three persons’ foot-
steps is not adequate to enable generalization of the results
to a larger population. Therefore, another data set has al-
ready been collected, and it contains the measurements of
37 persons. Also, another data set has been collected for
studying the modelling of steps in the crossings of EMFi
stripes. The data set includes footsteps with and without

shoes, test material for studying steps using left/right foot,
and the effect of the distance from the measurement de-
vice.

The features chosen for modelling (mean, standard de-
viation, minimum and maximum) were not able to cap-
ture the signal characteristics. Therefore, different fea-
tures will be tested later on. Furthermore, the amount of
data is too a small to allow HMM classification. Com-
pletely different classification methods will be tested and
compared.

The problem of identification will be even more diffi-
cult with several persons walking in the room at the same
time. This requires a methodology for tracking objects on
the floor, and this will be studied in a different setting later
on.
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[8] V.-M. Mäntylä, J. Mäntyjärvi, T. Seppänen, and
E. Tuulari, “Hand gesture recognition of a mobile
device user,” in IEEE International Conference on
Multimedia and Expo, 2000. ICME 2000., 30 July-2
Aug. 2000, vol. 1, pp. 281 – 284.



[9] H. Shatkay and L.P. Kaelbling, “Learning
geometrically-constrained hidden markov models
for robot navigation: Bridging the topological-
geometrical gap,” J. Artificial Intelligence Research,
vol. 16, pp. 167–207, 2002.

[10] L.R. Rabiner, “A tutorial on Hidden Markov Models
and selected applications in speech recognition,” in
Proc. IEEE, 1989, vol. 77, pp. 257–286.

[11] R. Bakis, “Continuous speech word recognition via
centisecond acoustic states,” in Proc. ASA Meeting,
1976.

[12] F. Jelinek, “Continuous speech recognition by statis-
tical methods,” in Proc. IEEE, 1976, pp. 532–536.

[13] V. Cherkassky and F. Mulier, Learning From Data.
Concepts, Theory, and Methods., John Wiley &
sons, Inc., 1998.

[14] L.E. Baum, “Statistical inference for probabilistic
functions of finite state markov chains,” Ann. Math.
Stat., vol. 37, pp. 1554–1563, 1966.

[15] A.P. Dempster and N.M. Laird amd D.B. Rubin,
“Maximum likelihood from incomplete data via the
EM algorithm,” J. Royal Statistical Society, vol. 39,
no. 1, pp. 1–22, 1977.

[16] A.J. Viterbi, “Error bounds for convolutional codes
and an asymptotically optimal decoding algorithm,”
IEEE Trans. Informat. Theory, vol. IT-13, pp. 260–
269, 1967.

[17] S.J. Young, “The HTK Hidden Markov Model
Toolkit: Design and philosophy,” Tech. Rep., Uni-
versity of Cambridge Eng. Dept., 1993, Tech. rep.
TR.153.

[18] P. Heinonen and Y. Neuvo, “FIR-median hybrid fil-
ters,” IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. ASSAP-35, no. 6, pp. 832–838, 1987.


