

FOOTSTEP IDENTIFICATION FROM PRESSURE SIGNALS USING HIDDEN MARKOV MODELS

Jaakko Suutala Assistant Researcher Intelligent Systems Group University of Oulu, Finland e-mail: jaakko.suutala@ee.oulu.fi

> Susanna Pirttikangas Jukka Riekki Juha Röning

Outline

- Introduction
- Emfi Material
- Hidden Markov Models Classification
- Data
- Test Results
- Conclusions

Introduction

Neurogroup

What we have done ?

- Initial experiments on recognizing walkers from the measurements achieved with a pressure sensitive floor
 - A 100 square meter pressure sensitive floor used
 - Test classifications included footsteps from three walkers

Methods

- Discrete Hidden Markov Models (HMM)
 - One HMM per walker created for classification
 - Overall 78 % successrate of footstep identification
- Aim
 - A part of research on intelligent environments: to learn and react to behaviour of occupants
 - Monitoring hazardous situations
 - Surveillance systems
 - Helping child care

Emfi Material

Material

- ElectroMechanical Film (EMFi)
 - A thin, flexible, lowprice electret material, which consists of cellular, biaxially oriented polypropylene film coated with metal electrodes
 - It is possible to store a large permanent charge in the film by corona method using electric fields
 - An external force affecting on the EMFi's surface causes a change in the films thickness resulting a charge between the conductive metal layers
 - This charge can be detected as a voltage, which describes the changes in the pressure affecting the floor

Applications

- Used for many commercial applications
 - Keyboards, microphones in stringed musical instruments and as small and large area sensors

Emfi Material (2)

• Emfi-floor

- In our research laboratory EMFi-material is placed under the normal flooring
- Consists 30 vertical and 34 horizontal EMFi- sensor stripes, 30 cm wide each
- Why not Squares ?
 - Number of wires

Emfi Material (3)

Emfi Material (4)

• EMFi-data

- Each 64 stripes produces continuous signal
- Streamed into a PC from where the data can be analysed in order to detect and recognize the pressure events
- The analogous signal is processed with National Instruments AD-card (PCI-6033E), sampling rate can be chosen between 0.1 - 64 kHz
 - 100 Hz sampling rate is used in these experiments

Hidden Markov Models Classification

• Hidden Markov Models (HMM)

- A natural way for modelling time dependent signals
- Widely used for speech recognition

HMM based classification

- Observation sequence generated by a Markov model
 - A Markov model is a finite state machine which changes its state once every time unit
 - Each time t that state S_j is entered, a vector O_t is generated from a certain probability distribution B.
 - In practise, only the observation sequence is known and the underlying state sequence is hidden
 - There are different types of HMM's, discrete Left-Right model was used here

Hidden Markov Models Classification (2)

• Footstep classification

- Features calculated using overlapping time window
 - Features: mean, standard devitation, maximum, minimum
- The observation sequence is obtained using Learning Vector Quantization (LVQ) codebook
- One HMM model for each class (person), prototype model trained with example steps using Baum-Welch estimation
- Test footsteps are classified choosing the maximum likelihood for each model

Intelligent Systems Group Department of Electrical and Information Engineering and Infotech Oulu www.ee.oulu.fi/research/neurogroup

Hidden Markov Models Classification (3)

HMMs for walker identification

Data

Collecting data

- Footsteps from three persons, walking alone and casually on the pressure sensitive floor for 30 seconds
 - Data recorded from all the 64 channels
 - Testees weighted 66 kg ± 2, wore their own shoes

• Pre-processing data

- Finding "good-quality" steps from noisy data
 - A raw segmentation made with hybrid-median filters
 - The best footsteps were selected manually

Data (2)

Neurogroup

Raw data

Data (3)

Neurogroup

• Extracted footsteps

Test Results

Neurogroup

• The best initial results

- 4 state HMM's
- Window width: 15 ms, overlapping: 5 ms
- Features: mean, standard devitation, maximum, minimum
 - normalized between 0 and 1
- LVQ-codebook size: 256

• The confusion matrix for three persons' footsteps

	Person1	Person2	Person3
Person1	72.2	27.8	С
Person2	36.84	63.16	С
Person3	0	4.8	95.2

Conclusions

- Neurogroup
- Initial experiments on identifying persons based on their footsteps were reported
 - Basic tools for using the EMFi-floor are developed
 - Identification of three persons footsteps is not adequte to enable the generalization of the results for larger population
 - Future plans
 - Collecting data from larger population
 - Testing different kind of features
 - Implementing completely different methods

