


# **COMBINING CLASSIFIERS WITH DIFFERENT FOOTSTEP** FEATURE SETS AND MULTIPLE SAMPLES FOR PERSON **IDENTIFICATION**

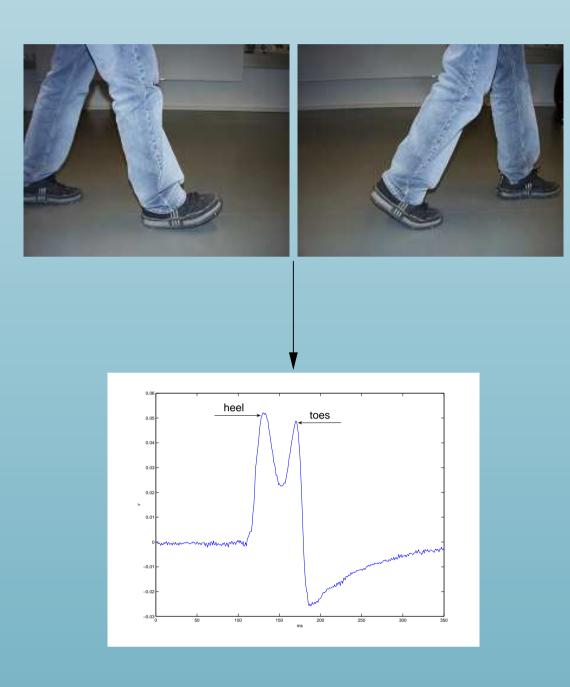
## Overview

- A method for footstep-based person identification on pressure-sensitive floor is presented
- Method takes advantages from the combination of multiple classifiers and multiple samples
- Over 90% recognition rate of eleven walkers is achieved
- Overall aim of this research is to build an intelligent environment: utilizing pressure-sensitive floor to learn and react to behaviour of occupants
- Example applications of footstep identification (and tracking):
- Monitoring hazardous situations
- As a part of surveillance system
- Helping child care

## Sensor, Environment and Footstep Patterns

#### • Sensor material

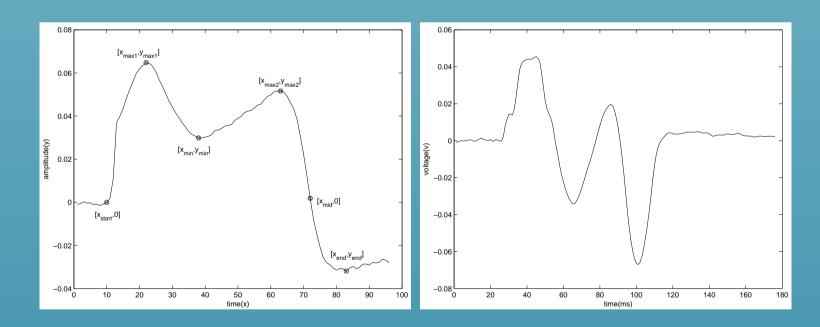
- ElectroMechanical film (EMFi) material
- External force makes an impact to its surface: from force to voltage




#### Environment

- EMFi material is mounted under the carpet in our research laboratory
- Consists of 64 long, 30 cm wide sensor stripes,
- Make up a 30x34 matrix, where the cell size is 30x30 cm

## Jaakko Suutala, Juha Röning


Intelligent Systems Group and InfoTech Oulu P.O. Box 4500, 90014 University of Oulu, Finland Email:{jaakko.suutala, juha.roning}@ee.oulu.fi



#### • Footstep pattern

- Consists of two clearly observable local peaks resulting from the heel strike and toe push-off

- In footstep identification, single footstep patterns of walking person are segmented from the raw signal



- Two different presentation of input signal used: direct signal (left) and **derivate of signal** (right)
- Three different feature sets calculated from the footstep profile: **1. Spatial time-domain feature set (SP)** 
  - -statistical and spatial features: mean, standard deviation, max of heel strike, max of toe push-off, min between heel and toes, area of amplitude etc.
- 2. Frequency-domain feature set of signal (FR1) – Amplitude spectrum of 64-point FFT + PCA
- 3. Frequency-domain feature set of derivate signal (FR2) – Amplitude spectrum of 64-point FFT + PCA

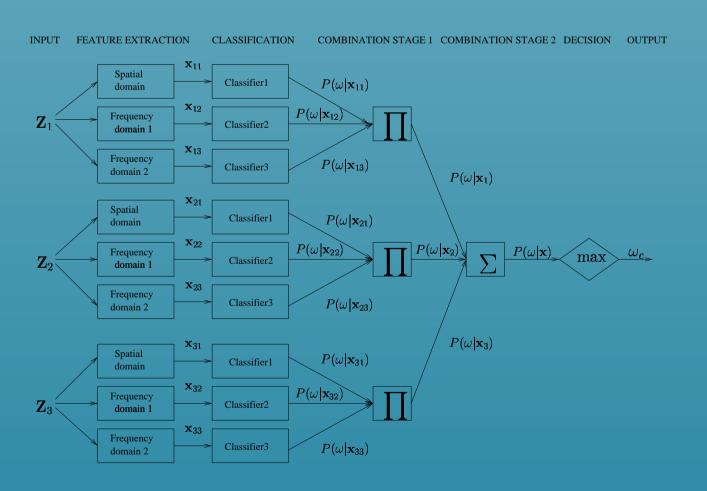
## Multi-classifier Multi-sample **Classification Method**

#### • Two-stage identification method:

1. Combining classifiers with different features sets (SP, FR1, FR2) for single footstep (i.e. sample)

2. Combining multiple consecutive footsteps (i.e., samples) • Combination is based on classifiers **conditional posterior proba**bility outputs

1. Combining partially independent features sets / classifiers (product rule)


$$\omega_c = \underset{k=1}{\operatorname{argmax}} \left[ \prod_{i=1}^R P(\omega_k | x_i) \right]$$

2. Combining multiple consecutive samples (sum rule)

$$\omega_c = \underset{k=1}{\operatorname{argmax}} \left[ \sum_{i=1}^{S} P(\omega_k | x_i) \right]$$

3. Multi-classifier multi-sample method (product-sum rule)

$$\omega_c = \underset{k=1}{\operatorname{argmax}} \left\{ \sum_{j=1}^{S} \left[ \prod_{i=1}^{R} P(\omega_k | x_{ij}) \right] \right\}.$$



## **Pattern Classifiers**

• Two different pattern classification methods were tested in these experiments

#### • Learning Vector Quantization (LVQ)

– Each feature set was modeled using single LVQ codebook – Posterior probabilities were estimated using distance between unknown sample and the closest codebook vectors

## • Dataset

- Modeling

| Feature Set | LVQ (%)    | MLP (%)                  |
|-------------|------------|--------------------------|
| SP          | 67.7 (4.9) | 72.6 (3.4)               |
| FR1         | 48.5 (3.7) | 55.8 (4.8)               |
| FR2         | 55.6 (6.2) | 55.8 (4.8)<br>61.6 (4.6) |
| product     | 74.8 (8.8) | 79.2 (7.5)               |

| No. samples | 1          | 2          | 3          | 4          | 5          | 6          | 7          | 8          | 9          |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| LVQ (%)     | 74.8 (8.8) | 86.1 (5.8) | 91.2 (6.1) | 93.6 (3.9) | 94.6 (4.7) | 95.0 (4.5) | 95.5 (4.3) | 97.3 (4.4) | 97.3 (4.3) |
| MLP (%)     | 79.2 (7.5) | 89.0 (4.4) | 92.4 (4.6) | 92.4 (6.3) | 95.0 (4.5) | 95.0 (5.0) | 95.9 (5.0) | 96.8 (6.1) | 98.2 (3.8) |

- files is introduced
- useful



• Multi-layer Perceptron (MLP) Neural Network

– Each feature set was modeled using network with one hidden layer and sigmoid activation functions

– MPLs were trained with backpropagation using scaled conjugated gradient optimization method

- Softmax criterion was used in output layer to approximate posterior probabilities

## **Experimental Results**

– 11 different walkers, wearing their own shoes – 40 segmented footsteps from each walker

-2/3 for training, 1/3 for testing (hold-out method) – 10 times randomly chosen data sets

- Identification accuracies of different features sets (SP, FR1, FR2)
- Combination of all feature sets (product rule)

• The identification accuracies using multi-classifier multi-sample method (product-sum rule)

• Results are shown using different number of consecutive samples

#### Summary

• Person identification system based on walker's footstep pro-

• Combination of classifiers trained with different feature presentations and fusing consecutive samples are found to be very

• Results are promising: e.g., using multiple classifiers with 3 consecutive samples 92% recognition rate is achieved

More info: http://www.ee.oulu.fi/research/isg/