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Overview

� A method for footstep-based person identification

on pressure-sensitive floor is presented

� Method takes advantages from the combination of

multiple classifiers and multiple samples

� Over 90% recognition rate of eleven walkers is
achieved

� Overall aim of this research is to build an intelligent environ-
ment: utilizing pressure-sensitive floor to learn and react to be-
haviour of occupants

� Example applications of footstep identification (and tracking):

– Monitoring hazardous situations

– As a part of surveillance system

– Helping child care

Sensor, Environment and Footstep

Patterns

� Sensor material

– ElectroMechanical film (EMFi) material

– External force makes an impact to its surface: from force to volt-
age

� Environment

– EMFi material is mounted under the carpet in our research lab-
oratory

– Consists of 64 long, 30 cm wide sensor stripes,

– Make up a 30x34 matrix, where the cell size is 30x30 cm
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� Footstep pattern

– Consists of two clearly observable local peaks resulting from
the heel strike and toe push-off

– In footstep identification, single footstep patterns of walking
person are segmented from the raw signal
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� Two different presentation of input signal used: direct signal
(left) and derivate of signal (right)

� Three different feature sets calculated from the footstep profile:

1. Spatial time-domain feature set (SP)

– statistical and spatial features: mean, standard deviation,
max of heel strike, max of toe push-off, min between heel and
toes, area of amplitude etc.

2. Frequency-domain feature set of signal (FR1)

– Amplitude spectrum of 64-point FFT + PCA

3. Frequency-domain feature set of derivate signal (FR2)

– Amplitude spectrum of 64-point FFT + PCA

Multi-classifier Multi-sample

Classification Method

� Two-stage identification method:

1. Combining classifiers with different features sets (SP, FR1,
FR2) for single footstep (i.e. sample)

2. Combining multiple consecutive footsteps (i.e., samples)

� Combination is based on classifiers conditional posterior proba-
bility outputs

1. Combining partially independent features sets / classifiers
(product rule)
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2. Combining multiple consecutive samples (sum rule)
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3. Multi-classifier multi-sample method (product-sum rule)
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Pattern Classifiers

� Two different pattern classification methods were tested in these
experiments

� Learning Vector Quantization (LVQ)

– Each feature set was modeled using single LVQ codebook

– Posterior probabilities were estimated using distance between
unknown sample and the closest codebook vectors

� Multi-layer Perceptron (MLP) Neural Network

– Each feature set was modeled using network with one hidden
layer and sigmoid activation functions

– MPLs were trained with backpropagation using scaled conju-
gated gradient optimization method

– Softmax criterion was used in output layer to approximate pos-
terior probabilities

Experimental Results

� Dataset

– 11 different walkers, wearing their own shoes

– 40 segmented footsteps from each walker

� Modeling

– 2/3 for training, 1/3 for testing (hold-out method)

– 10 times randomly chosen data sets

Feature Set LVQ (%) MLP (%)

SP 67.7 (4.9) 72.6 (3.4)
FR1 48.5 (3.7) 55.8 (4.8)
FR2 55.6 (6.2) 61.6 (4.6)

product 74.8 (8.8) 79.2 (7.5)

� Identification accuracies of
different features sets (SP,
FR1, FR2)

� Combination of all feature
sets (product rule)

No. samples 1 2 3 4 5 6 7 8 9

LVQ (%) 74.8 (8.8) 86.1 (5.8) 91.2 (6.1) 93.6 (3.9) 94.6 (4.7) 95.0 (4.5) 95.5 (4.3) 97.3 (4.4) 97.3 (4.3)
MLP (%) 79.2 (7.5) 89.0 (4.4) 92.4 (4.6) 92.4 (6.3) 95.0 (4.5) 95.0 (5.0) 95.9 (5.0) 96.8 (6.1) 98.2 (3.8)

� The identification accuracies using multi-classifier multi-sample
method (product-sum rule)

� Results are shown using different number of consecutive samples

Summary

� Person identification system based on walker’s footstep pro-
files is introduced

� Combination of classifiers trained with different feature pre-
sentations and fusing consecutive samples are found to be very
useful

� Results are promising: e.g., using multiple classifiers with 3
consecutive samples 92% recognition rate is achieved

More info: http://www.ee.oulu.fi/research/isg/


