

Learning to Track Persons with Gaussian Process Joint Particle Filtering

Jaakko Suutala

Computer Science and Engineering Laboratory, University of Oulu, Finland Email:jaska@ee.oulu.fi

Overview

- A novel approach to multiple target tracking
- Method combines Gaussian Processes (GP) and Particle Filtering (PF)

Experimental Results

- Sensor and environment
- Sensor material is mounted on the floor surface
- Multiple target interactions are modelled by Markov Random Fields (MRF)
- Binary switch floor sensor is used to detect walkers

Tracking Methodology

- Gaussian Process Regression (GPR)
- Non-parametric probabilistic method to learn kernel machines
- GP is a collection of random variables of function $f(\mathbf{x})$ that have a joint Gaussian distribution

 $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x'}))$

– GP is specified by its mean and covariance

 $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ $k(\mathbf{x}, \mathbf{x'}) = \mathbb{E}[f(\mathbf{x}) - m(\mathbf{x})] - m(\mathbf{x'})$

– Besides point estimates provides the uncertainty directly

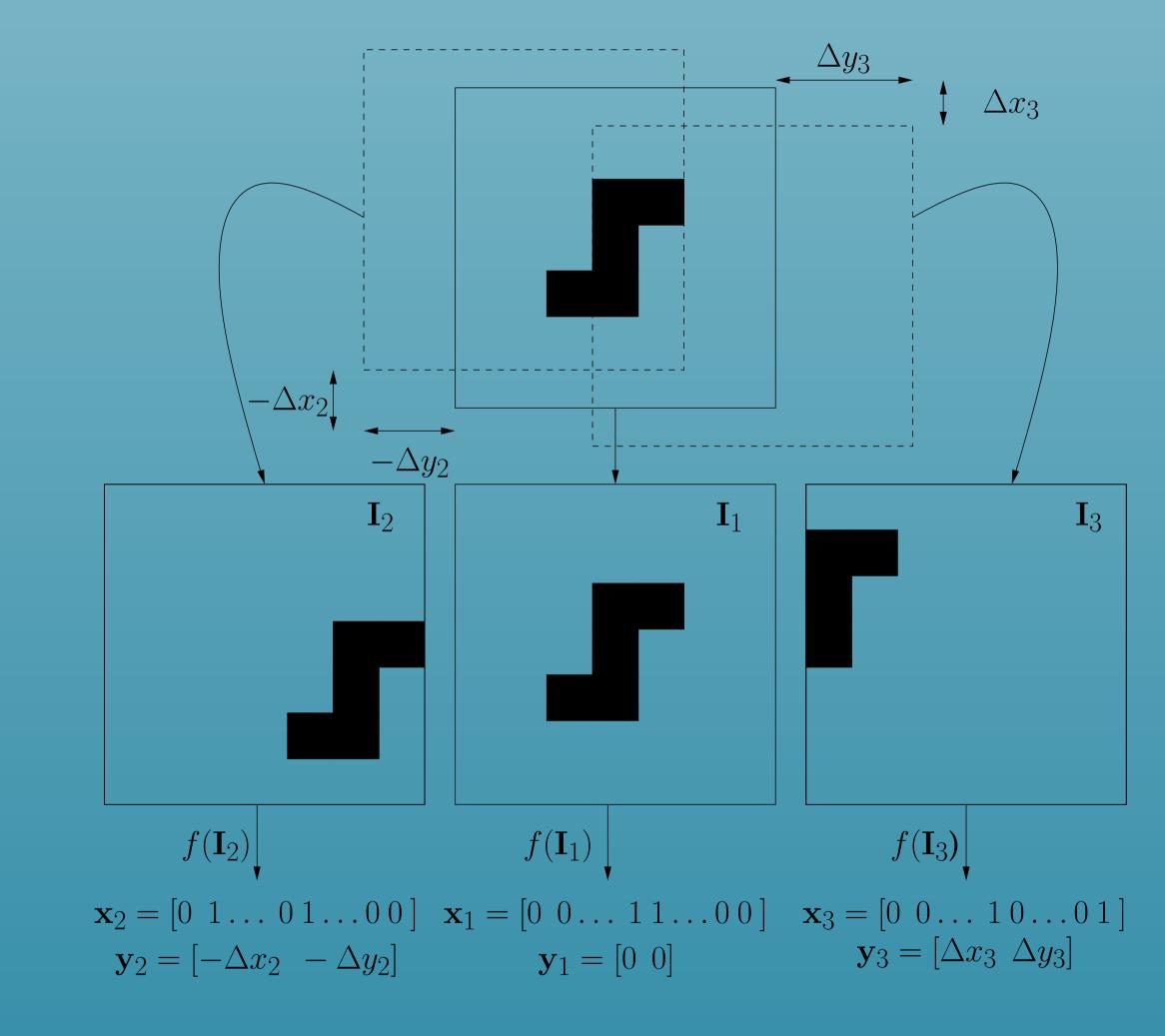
$$\overline{f}_* = \mathbf{k}_*^T (K + \sigma_n^2 I)^{-1} \mathbf{y}$$
$$\mathbb{V}[f_*] = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T (K + \sigma_n^2 I)^{-1} \mathbf{k}_*$$

– Kernel hyperparameters can be learned from the data by maximizing the log likelihood

$$\log p(\mathbf{y}|X,\Theta) = -\frac{1}{2}\mathbf{y}K_y^{-1} - \frac{1}{2}\log|K_y| - \frac{n}{2}\log 2\pi$$

• GPR displacement expert

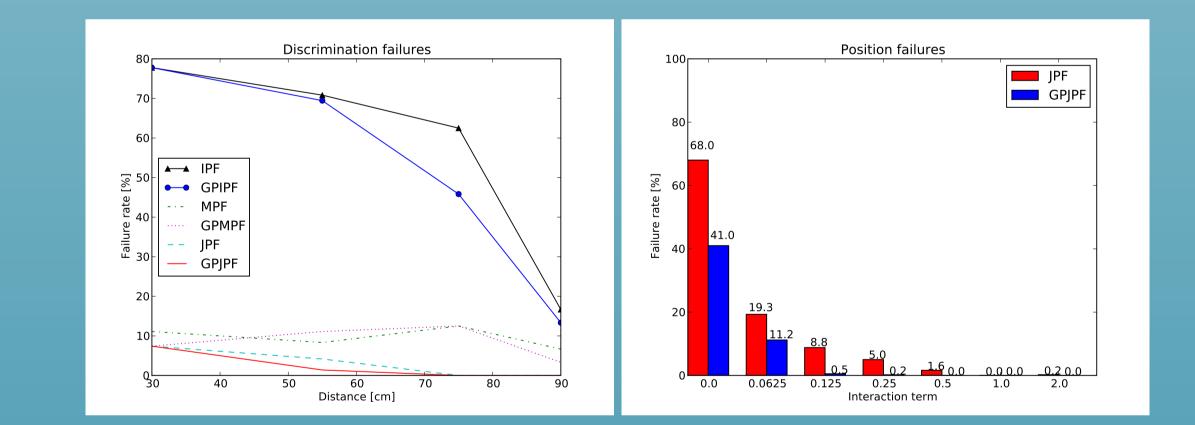
- Expert which learns mapping between input features and displacements
- GPR is trained on displacement dataset sampled from the true position $y \sim uniform(-\Delta, \Delta)$
- Tracking state estimates can be corrected by GPR displacement expert


 $\mathbf{x}_t = \mathbf{x}_{t-1} + GP_{\mu}(\mathbf{I}(\mathbf{x}_{t-1}))$

- 3 m^2 area consists 300 binary switches where the cell size is 10x10 cm
- 16 Hz sampling rate
- Dataset
- 3 different subjects (1 female and 2 male walkers)
- Totally 70 different sequences collected from two simultaneous walkers
- Tracking methods
- Stationary motion model applied: $\mathbf{x}_t = \mathbf{F}\mathbf{x}_{t-1} + \epsilon$
- In conventional PFs Gaussian measurement model applied
- In GP-based methods learned measurement model applied

$$p(\mathbf{y}_t | \mathbf{x}_t) = \frac{1}{(2\pi)^{1/2} \sqrt{|GP_{\Sigma}(\mathbf{x}_t)|}}$$
$$\exp[-\frac{1}{2} (GP_{\mu}(\mathbf{x}_t))^T GP_{\Sigma}(\mathbf{x}_t)^{-1} (GP_{\mu}(\mathbf{x}_t))$$

		Sequence failures (%)	Frame failures (%)			
Method	Samples	Total	Position	Identity	Number	Total
IPF	50/target	57.14	15.18	6.00	7.18	16.58
GPIPF	25/target	52.86	13.65	5.10	6.92	15.28
MPF	50/target	12.38	0.37	0.37	0.87	1.11
GPMPF	25/target	8.57	0.21	0.25	0.28	0.48
JPF	100	9.05	0.04	0.00	0.47	0.51
GPJPF	50	3.81	0.09	0.00	0.06	0.12


• Discrimination accuracy and MRF influence

• Joint Particle Filter

– Numerical approximation method for nonlinear non-Gaussian dynamical systems

$$p(\mathbf{x}_t | \mathbf{x}_{t-1}) \propto \prod_i p(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i)$$

• GPJPF in action

• Markov Random Fields for Target Interaction

– Multi-target interaction model for data association problem

 $p(\mathbf{x}_t | \mathbf{x}_{t-1}) \propto \prod_i p(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i) \prod_{i,j \in E} \psi(\mathbf{x}_t^i, \mathbf{x}_t^j)$

Gaussian Process Joint Particle Filter

• Combines trained GPR model, SIR Particle Filter, and MRF motion model

 $w_t = w_{t-1} \prod_{i=1}^n \mathcal{N}(\tilde{\mathbf{x}}_t^i; \mathbf{x}_t^i, GP_{\Sigma}(\mathbf{x}_t^i)) \prod_{i,j \in E} \psi(\tilde{\mathbf{x}}_t^i, \tilde{\mathbf{x}}_t^j)$

 $\tilde{\mathbf{x}}_t = \mathbf{x}_t + GP_{\mu}(\mathbf{x}_t)$

Summary

Multi-person position tracking system based on GPJPF
Accurate tracking of two simultaneous walkers on a sensor floor
Outperforms other conventional GP and PF trackers

References

J. Suutala, K. Fujinami, and J. Röning, Learning to Track Persons with Gaussian Process Particle Filtering, Technical Report, University of Oulu, 2010.

Videos available: http://www.ee.oulu.fi/\~jaska/gpjpf/