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Abstract. This paper describes methods and sensor technology useeérto i
tify persons from their walking characteristics. We use aayaof simple binary
switch floor sensors to detect footsteps. Feature analgdisezognition are per-
formed with a fully discriminative Bayesian approach usin@aussian Process
(GP) classifier. We show the usefulness of our probabilagtigroach on a large
data set consisting of walking sequences of nine differebjests. In addition,
we extract novel features and analyse practical issuesasittte use of different
shoes and walking speeds, which are usually missed in thésdi experiment.
Using simple binary sensors and the large nine-person dgtave were able to
achieve promising identification results: a 64% total rettgn rate for single
footstep profiles and an 84% total success rate using longking sequences
(including 5 - 7-footstep profiles). Finally, we present atext-aware prototype
application. It uses person identification and footsteption information to pro-
vide reminders to a user.
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1 Introduction

Providing context-aware services to the user by means obdnmuman-computer in-
teraction requires natural and transparent ways to ideatifl locate users [1], [2], [3].

We present an approach to person identification based onrhumséion. More
specifically, we concentrate on a person’s style of walkimigich presents behavioral
characteristics of biometrics and is very natural becaosedditional action is required
of the user. In this work, binary switch sensors are used tectl@ person s walking
sequence. A binary switch sensory system consisting of i@y af 300 sensors was
installed on the surface of the floor. Each 10 cm x 10 cm binati{ch senses weight
affecting its surface. A 3n? floor area was covered to collect data and to recognize
walkers.

User identification is based on statistical machine leanive use a Gaussian pro-
cess (GP) classifier [4] with specific features extractethftbe footstep profiles pro-
duced by the sensor array as well as features calculatee@bpteonsecutive footsteps.



The usefulness of the GP as a fully Bayesian kernel methagesreh the ability to
model uncertainty of data, which leads to automatic deteation of hyperparameters
(e.g., the importance of different features). It also pEtuconditional posterior prob-
abilities of class labels (i.e., the degree of belonging tedain class), which allows
extensions and different post-processing capabilitieketlassifier. Feature extraction
itself is based on the standard methodology of image prougsas the sensor array
can be presented as a binary image. Different features trected from the binary im-
age based on single footstep profiles (e.g., length and walttulated from connected
components in the binary image) and from the sequence ofinga(le.g., step length
and duration between consecutive footstep profiles). Aloith these typical walker
identification features we examined more specific ones tleae walculated from the
time-integrated signal. In practice, the binary signalsensimmed over time to form a
grey-level image, and then features such as mean, stanelaadidn, and the center of
mass were extracted from the connected components.

Data sets were collected from nine different subjects,uidicly 20 walking se-
quences for each person. Each person wore their own shoaddition, four persons
walked at three different walking speeds (slow, normat) fasd also with two different
pairs of shoes and without shoes. In the GP classificationxamimed the identifica-
tion based on single footstep profiles as well as the ideatifin using information
from walking sequences (i.e., including multiple footstepfiles). The importance of
different features were also analyzed.

This paper presents a simple yet modular floor sensor systatistable to iden-
tify persons based on their walking. It also describes anrate classification method
that is simultaneously able to analyze and choose the m@striant features and pro-
duce posterior probability of ID labels for post-procegsiRurthermore, the effect of
changes in walking speed and footwear is analyzed for thdifirs.

2 Related Work

Various floor sensor settings have been used to model hunteavibe for identifica-
tion, tracking, and other purposes in smart and interaeiweronments as well as in
health care. In the early works by [5] and [6], footstep idfeagtion was based on a
small area of ground reaction force (GRF) sensors usingeseaeighbor and hidden
Markov model (HMM) methods, respectively. In the work by,[Aiman GRF-based
authentication system was developed for use as part of ailance system. Recently,
a sensor installation, collection of a large data set ane® x@nts with a person ver-
ification scenario were presented in [8]. They used a GRFosemith geometric and
holistic features along with a support vector machinesstias.

In [9], electromechanical films (Emfi) that measures dyngméssure changes on
the floor surface were used for person identification. A caispa of different methods
(e.g., support vector machines and neural networks) was.daraddition, classifier
fusion techniques were applied to combine different fesa@ts and walking sequence
information to achieve a more reliable recognition system.

UbiFloor [10], uses simple ON/OFF switch sensors, and ifleation is based on
features of both single footsteps and walking calculateohffive consecutive footsteps



on the floor. The sensor arrangement differs from our workthmiuse of simple binary
sensors is most similar to ours from the application viewpoA multi-layer percep-

tron (MLP) neural network was used as a classifier. [11] dged a high-resolution
low-cost pressure sensor mat made of resistive switchesy also performed person
identification based on sequential features such as s#iugh, gait period, and heel-
to-toe ratio along with an Euclidean distance measure assaitier.

A sensor approach similar to this work was established by H@wever, they con-
centrated on human tracking applications based on Markaindiionte Carlo meth-
ods. [13] presents a system that also uses binary ON/OFBrsanavhich over 65,000
pressure switches in an area of# give a very high resolution to the modeling of the
details of single footstep profiles as an image of footprinke floor was tested by de-
tecting humans and robots and discriminating between tfiethreported the use of a
beneath-the-floor accelerometer and tactile sensors telfmatsteps and footprints in
order to recognize gender. [15] covered the floor of an icteraspace with hexagonal
pressure-sensitive floor tiles to detect the presence ofuse

Besides identification and tracking, force plates have hsed to detect and clas-
sify simple human body movements, such as crouches and jasngsll as standing up
and sitting down [16]. A lot of work has also been done in mabliesearch domains,
including [17], where pattern recognition methods weraluseclassify different gait-
related injuries based on GRF sensor measurements.

In summary, this work present a unique sensor approach sppedentification
([12] uses similar sensors but they are used in a trackingicgipn). We also extract
novel features from the floor and analyze the importancedividual features as well
as the effect of walking speed variations and differentii@atr, which are typically not
included in the other studies related to floor-based ideatifin. Our approach has a
direct possibility of combining sequential informatioroifin multiple footsteps based
on the classifier s posterior probability outputs. This igejgimilar to [9], except that
further post-processing is not needed to get the confidenebels.

3 Binary Switch Floor Sensor System

VS-SF55 InfoFloor sensor system made by Vstone Corpordtiodapan) [18] was
installed in our research laboratory. The system contaislacks of 50 cm x 50 cm
sensor tiles. Each tile includes 25 10 cm x 10 cm binary swstamsors. A 3n? area
was covered by altogether 300 sensors (see Fig. 1). Thersams®diode technology
and are able to detect over 200-250-m? weight affecting the surface. Data were
collected from each sensor using a 16 Hz sampling rate ardcsarPC via an RS-232
serial interface. In the PC, a multi-threaded TCP-IP sewas implemented to share
raw sensor data with client applications.

Compared with other floor sensor technologies (e.g., EmJj {fBg advantages of
using this kind of floor sensor system are low cost, easyllatta, and little need for
pre-processing to get the data (e.g., for positioning aedtification). Moreover, the
sensor floor utilized in this paper is designed to be modulaich allows the sensor
area to be able extended incrementally. On the other hamdp&ed with cameras,
audio, or RFID technology, floor sensors are more stablethiey do not suffer from



environmental changes. A drawback is that only very limit6§drmation is obtained
from the binary floor compared with cameras or other floor setechnologies (e.g.,
Emfi and GRF sensors). This is very challenging, especiallgomplex recognition
tasks such as person identification, where discriminategwéen different persons can
depend on very detailed differences in persons walkinggestyDne aim of this work
was to be able to extract such useful and discriminativermétion from this limited,
yet practical, sensor system.

Fig. 1. Arrangement of binary sensor tiles.

4 Discriminative Bayesian Classification: Gaussian Process

Discriminative learning is a very effective way to train npépgs from multidimensional
input feature vectors to class labels. Kernel methods, itiquéar, have become state-
of-the-art, due to their superior performance in many vealld learning tasks. Along
with the popular support vector machines (SVM) [19], Gaarsgirocesses (GP) [4]
have recently been given much attention in the machineileguoommunity.

Although the SVM method has many favorable properties, ssgood generaliza-
tion by finding the largest margin between classes, thetaldihandle non-separable
classes via soft-margin criteria, non-linearity modelirig explicit kernel mapping,
sparseness by presenting data using only a small numbeppddwectors, and global
convex optimization with given hyperparameters, it lackse properties. One draw-
back of SVM is that it is directly applicable only in two-ckproblems. Thus, there
have been various attempts to generalize it for multi-ctdessification. The simplest
and most popular methods are based on multiple binary fikxssusing one-vs.-one
or one-vs.-rest approaches as well as error correctingibatues and directed acyclic
graphs, to name a few [20].

Another problem is the choice of a good model, which is vergantant in kernel-
based discriminative learning. This is due to the fact thgbad solution is usually
dependent on a number of hyperparameters (which contrprtiperties of kernel map-
ping). In SVM, the hyperparameters (and possibly the gotdaiuof features) need to
be found using ad-hoc methods such as cross-validatiomer search-based methods.
When the number of hyperparameters or the number of feaituresases, the search



space can become very large. Finally, SVM cannot directlg giconfidence measure-
ment as an output, it only gives a decision as an unscalegihdistfrom the margin in
the feature space. Posterior distribution over prediclesksdabels is a very important
property in many pattern recognition systems in order tolide to implement some
post-processing tasks (e.g., rejecting unreliable exaspbmbining multi-modal sen-
sor data, combining sequential data, etc.). There have dmae attempts to extended
SVM to give probabilistic outputs (see [21], for examplepwiever, this method needs
to train another mapping to the SVMs output after the trajridased on parametric
sigmoid mapping. This makes the method more complicateghassibly another vali-
dation data set needs to be optimized for post-processipgimz.

To tackle these problems, we apply a Bayesian approach tekbased learn-
ing via Gaussian process priors. We use the multi-classoapprpresented in [22],
which approximates a complex posterior probability by m@zing the variational
lower bound. By using a multinomial probit likelihood mogdelis possible to derive
a full multi-class classifier as a combination of multiplgmession models. These re-
gression models are coupled via the posterior mean essméinother set of auxil-
iary variables, which gives a statistically dependent iralétss model. Add-hoc post-
processing is not needed. In addition, predictive distrdmuover unknown examples
provides direct confidence measurement as a conditiontpasprobability of class
labels.

During the training phase of the classifier, Gaussian pssegrovide a possibility
to optimize the hyperparameters by maximizing the mardikelihood via gradient-
based optimization routines [23], [4] or by setting a prigtdbution for the hyperpa-
rameters and employing sampling methods such as importamspling to get poste-
rior expectations [22]. We follow the approach used in [2&2hjch uses exponential
distribution and a gamma distribution placed on its meatmfa conjugate pair. Fur-
thermore, by applying a radial basis function (RBF) kernghwndividual length scale
parameters to each feature dimension, we can determinepogtance of each feature
when optimizing the hyperparameters (i.e., automativeslee detection (ARD)). This
is used to increase the accuracy of person identificatioredisaa/to analyze features in
different practical settings. One drawback of GPs is tHahaltraining data are needed
in the classification phase. When a large data set is used sparse approximation
methods need to be applied [22]. In this paper, a full modesed due to its capability
of real-time performance in the prototype application.

5 Person Identification Based on Floor Sensors

5.1 Feature Extraction

As in typical pattern recognition systems, we need to ekgame higher level features
from the raw data to be able to perform accurate identificafibie binary switch sensor
floor forms a matrix where each sensor tile can be presentadoagl in the image.
This allows us to apply standard image processing techaitjueetect footsteps and to
extract features. We use two kinds of presentations: biaadygrey-level images.

A binary image is detected by summing up the sensor valuestione, and then
thresholding each positive value to one. The summing isopexéd over each walking



sequence. A binary image gives us a direct way to detect thidtiquo of each footstep

in a sequence. This is done by labeling the 8-connected coem® of the image. Fur-

thermore, when collecting each individual image in a seqagwe are able to detect
the starting and ending time of each connected componefdadture extraction.

In addition, the integrated image (i.e., sequence of sunrsaeslor matrices) is saved
without thresholding. This matrix presents a grey-levegmain which each pixel forms
a duration value over the sequence and provides a possitailiéxtract a rich set of
features from the connected components. A “duration mapidsented as a grey-level
image in Figure 2, where a brighter value means more timedstdp that position. A
binary image can be calculated by thresholding grey-lemessr values larger than 0
to 1.

Fig. 2.Grey-level image calculated from sensor measurements afldng sequence. In addition,
the size of the sensor area is illustrated.

Feature extraction is based on the connected componemtd fouhe binary im-
age. The features can be divided into two categories: micdonaacro-level features.
Micro-level features are extracted from each footstepgubioth the binary and grey-
level presentations. This feature set includes featurels as the sum of binary pixels
in a single footstep profile. Minimum, maximum, mean, anadtad deviation values
are also extracted from the grey-level component. All tHeatures describe the shape
of the “duration map” inside a single footstep profile. To atédse the spatial proper-
ties of shape, convolution filters, familiar from image pesesing, are used. We apply
four different 3x3 line detection filters and four differe&8%3 sobel gradient filters (see,
for example, [24] for detalls). After filtering, the valuasside the connected compo-
nents are summed. Also, the length and width of the footstepcompensated center
of masses, and the duration of the footstep are calculatadrdvlevel features present
useful information between consecutive footsteps. We usdidean distances between
the center of mass points of adjacent footsteps as well agidodl distances in the
longitudinal and transversal walking directions. They eosely related to step length
measurement used in gait analysis. Finally, the duratidwdsn the starting times of
consecutive footsteps is calculated. Macro features avayal calculated against the
previous footstep in a sequence. A total of 28 features wdraated and are presented
in Table 1. Itis also straightforward to modify the footstigiection and feature extrac-
tion techniques for a real-time application, which is dissed in section 7.



Table 1. Spatial, statistical, and time-related features derivethfeach footstep profile (1-20) as
well as between consecutive footstep profiles (21-28).

Number Name Description
1. sUMp;n Number of activated pixels (i.e. sensor tiles) in this foepsprofile
2. sumgrey Sum of grey-level pixel values
3. mingrey Minimum grey-level value
4. mazgrey maximum grey-level value
5. meangrey Mean of grey-level pixels
6. stdgrey Standard deviation of grey-level pixels
7. sumyline Sum of grey-level component filtered with 3x3 line mask (ioat)
8. sumpline Sum of grey-level component filtered with 3x3 line mask (konital)
9. sumypine Sum of grey-level component filtered with 3x3 line mask (tétgonal)
10.  sumpine Sum of grey-level component filtered with 3x3 line mask (tigiagonal)
11.  su Mpgrad Sum of grey-level component filtered with 3x3 gradient mdsH|(of the footstep)
12. sumpgraq Sum of grey-level component filtered with 3x3 gradient maght side of the footstep)
13.  sum h,‘qra,d Sum of grey-level component filtered with 3x3 gradient mase{ of the footstep)
14. s '“"m’l_(,;'r'a.d Sum of grey-level component filtered with 3x3 gradient mdsk éide of the footstep)
15. lengthy;, Maximum length of connected binary pixels (longitudinakdiion of walking)
16.  widthy,, Maximum width of connected binary pixels (transversal clien of walking)
17, compp Center of mass of connected binary pixels (longitudinaation of walking)
18. comyp,;, y Center of mass of connected binary pixels (transversattitineof walking)
19. uu'rrzg7.e:yw Center of mass of connected grey-level pixels (longituktiiraction of walking))
20. comgrey v Center of mass of connected grey-level pixels (transvelisattion of walking)
21. duration;,s;qe Duration of footstep (i.e., activated tiles over time)
22. distancep;, Euclidean distance from previous footstep (using binantereof mass)
23. distancegrey Euclidean distance from previous footstep (using greglleenter of mass)
24. durationpep,,een Durationfrom the previous footstep (to beginning time a6 footstep in milliseconds)
25 distancep;y Longitudinal distance from previous footstep (using bynzenter of mass)
26. distancebin‘y, Transversal distance from previous footstep (using binanfer of mass)
27. distancegreyy Longitudinal distance from previous footstep (using gieyel center of mass)
28. d.istancegreyy Transversal distance from previous footstep (using geegticenter of mass)

5.2 Person Identification: Single Footsteps and Walking Segences

We derive two kinds of person identification methodologiasddl on the multi-class
Gaussian process classification and features presenteel fimevious section. The first
one is a conventional classification scenario where we ustepor distribution of class
labels predicted from a single footstep profile to make thasiten. In this case we use
micro-features as well as macro-features related to thequre footstep. This scenario
is useful in situations where the decision has to be madeiaklgas possible.

On the other hand, if we want more accurate recognition, weusa classification
information from multiple adjacent footstep profiles by duining the posterior distri-
bution of class labels. This scenario gives a recognitiaetan a sequence, which in
this case is one walking sequence (5-7 footsteps) on the ASdBP classification pro-
vides posterior over class labels, we can use summationranidigt rules to combine
the outputs. This kind of rule has been shown to be simplgygwerful, in many infor-
mation fusion problems [25]. The advantage is that we carausmventional training
phase and an arbitrary number of examples in a sequence t® tmakinal decision.
If P(wk|x;) represents the posterior probability of class labels () conditioned on
unknown example:;; and.S is the total length of a sequence, the final decision can be
calculated using the sum (Eg. 1) and proo]guct rule (Eq. 2)plkmAs:

We = ar%inlax [ ; P(wg |x7)} 1)
. S
We = ar%Lnlax [ H P(wi |xl)} (2)

i=1



The disadvantages of using this kind of scenario are relategptimization. Due
to the fact that the model is trained on single footstepspésdnot use information of
sequences to find a global optimum. In addition, the choia®ofbination rules in our
scenario is more ad-hoc and experimental compared wittoappes where sequential
information is directly learned from the data. Howeversthimple approach is able
to use the information of walking sequences at some leveétalibe to produce more
accurate decisions, as is shown in the results section. Avadson with more advanced
models, such as sequential kernels and other sequentzifides, is left for future
work.

6 Results

6.1 Data sets

To test the identification methods presented here, we dele& large data set. The
data set included walking sequences of nine different stdj&he test group consisted
of two female and seven male subjects, and each wore theirsbees (which were
indoor sandals in this case). They were told to walk theiurstwalking speed over
the sensor floor (from A to B in Figure 2) 20 times. To get as rata data set as
possible, the starting foot or the absolute position of daotstep in the sequence was
not constrained in any way. Each sequence included 5-7tépsofiles, depending on
the stride length of the subject. Altogether 1143 footsteyiles were collected from
the nine walkers.

In addition, to examine the effect of different walking &yl(i.e., walking speed)
and footwear on identification, we collected more data frour fsubjects. To study
variations in walking speed, we recorded additional segegrn which the subjects
were told to walk slower and faster than usual. Both settimgiee performed 10 times.
To test the effect of different footwear, 20 sequences ofexitd wearing their own
outdoor trackers and no shoes at all were collected. Comtpithiis data set with the
footsteps of the four persons collected earlier gave us fd&&step profiles for studying
the effect of variation in walking speed and footwear.

A total of 2597 footstep profiles were collected in theseisess To test and ana-
lyze the usefulness of the features and the classificatidthodes well as the modeling
capability of the features and adaptation of the classifieotvel data, we split the data
set into different subgroups. The standard nine-pers@sdtncluded 20 sequences of
normal walking speed and sandals for studying the extrdetddres and the capability
to perform multi-class classification using Gaussian psses. To analyze the effects
of variations on the extracted features more preciselyidbtstep profiles of four per-
sons were divided into three subgroups: standard (incfudialking at normal speed
and with sandals), footwear (including three differenttfeear at normal speed), speed
(including three different speeds with sandals on). Thedithese data sets was to be
able test how well the extracted features can handle vanisitn the data set and which
features have the best discriminative power in these gsttin

Furthermore, we split the four-person data set into 12 saulygs: sandals (including
all the data from sandals), without sandals (all the datagixtom sandals), trackers
(including data from outdoor shoes), without trackersI(iding all the data except



from trackers), without shoes (including the session withghoes), shoes (including
the session with shoes), normal (including normal speeat)narmal (including slow
and fast walking), slow (including slow walking), not slom¢luding normal and fast
walking), fast (including fast walking), not fast (includj slow and normal walking).
These data sets were used to examine the generalizatiobilitgpaf the classifier
and the need for adaptation when the test data set incluffesedily distributed (in
this case walking speed and footwear) data. These are vgmriemt when building
practical applications. A summary of the data set categasipresented in Table 2.

Table 2. Summary of different data set categories used in the pedsariification experiments

Number Name Description Number of examples number of semsen
1. 9persons standard Normal walking speed with sandals 1143 180
2. 4persons standard Normal walking speed with sandals 527 0 8
3. Footwear Normal walking speed with footwear variations 516 240
4. Speed Slow, normal, and fast walking speed with sanda%s 99 160
5. Sandals All the data with sandals 992 160
6.  Withoutsandals  All the data without sandals 989 160
7. Trackers All the data with trackers 441 80
8. Without Trackers All the data without trackers 1540 240
9. Shoes all the data with shoes 1433 240
10.  Without Shoes All the data without shoes 548 80
11.  Normal All the data with normal speed 1516 240
12.  Withoutnormal  All the data without normal speed 465 80
13.  Slow All the data with slow speed 248 40
14.  Without slow All the data without slow speed 744 180
15. Fast All the data with fast speed 215 40
16.  Without fast All the data without fast speed 755 180

6.2 Person Identification

In this section we present the recognition result of usirggrtime-subject data set de-
scribed in Section 6.1. We split the data set so that 2/3 weed for training and 1/3 for
testing, and all the features were scaled between 0 and iatidaal GP approximation
was achieved using 10 iterations, simultaneously leartfieghyperparameters of the
RBF kernel [20], [22]. This was repeated 10 times on randochlysen training and
test sets. All the tests were implemented with Python prognang language and the
GP models were trained with an R language variational BapeSP package [26].

Furthermore, sequential recognition was tested by comdithie GP outputs using
similarly trained models and fixed sum and product rulesleTalpresents the average
total identification (and standard deviations) of singletbep profiles as well as com-
bined recognition rates. The classifier is able to classifyartly 64% of the individual
footsteps, which shows the complexity of the data set obthfrom the simple binary
switch sensors. Using the fixed combination rules increasesracy and the product
rule outperforms the sum rule in this data set, showing an 84@6ess rate. The results
show that to achieve a high success rate, sequential infamia needed.

Table 3. Total identification accuracies of recognizing nine difietrwalkers

GP (single examples) GP (sum rule) GP (product rule)

Accuracy (%) 64.23 (3.27) 82.33 (6.59) 84.26 (6.69)




6.3 Feature Analysis of Footwear and Walking Speed Variatins

This section presents the results of analyzing the effediftgrent footwear and walk-
ing speed variations. Moreover, we rank the individualdead based on their relevance
in the identification method to determine which are the best&orst ones. To our
knowledge, this is the first time both footwear and walkingesphchanges are analyzed
in the context of floor sensors. These are very importanésainen building a practical
identification system.

We used the different four-person data sets presented ie Zalwhere we summa-
rize the total success rates (accuracy) as well as the mesane features (mrf) and
least relevant features (Irf) (cf. Table 1 for the order nemaf the features). Table 4
presents the results using standard data sets and foatpead/ variations. Looking at
the accuracies, the total number of persons in a classificaths a large impact (nine
persons vs. four persons.). Secondly, footwear variatigity decreases accuracy
compared with the standard data set (4.36 percent unit$kiyaspeed decreases ac-
curacy much more (10.50 percent units). In all the data getsnost important features
are related to walking sequence (i@stancepin, distance grey, durationpetween) and
the duration of footsteps. The least relevant featuresgdndout are always related to
micro-features. These results indicate that when usingddrbinary sensors, the use
of features carrying sequential information is very impatt The average length scales
of each feature in the nine-person data set are presentedureR3. A smaller value
means the feature is more important in the classificatiorstber The walking sequence
features are the most important, but footstep shape feafeig., calculated by the con-
volution filters) have a large impact, too (e.g., featuresBand 14)

Similar experiments are shown in Table 5. Now the test setatasvariations (i.e.,
footwear and walking speed) that are not included in theitngi data set. This is the
most complex approach presented in the paper. Clearlyga thecrease in total accu-
racies can be seen when comparing the results with thosdla ZaThis indicates that
itis important to collect and use all available informatfontraining if these variations
are assumed to happen. Similarly, it can be concluded tkatsyariations have a larger
negative impact on accuracy compared with footwear variatilnterestingly, the same
features as in the above data sets have the most relevamatfon for identification,
on average.

Table 4. Total identification accuracies and feature ranking usiffgrént datasets. The data sets
are described in Table 2 and the features are presentedlndakhe three most relevant features
(mrf) and least relevant features (Irf) are shown

Dataset Accuracy (%) mrf Irf

9 persons standard (1.) 64.23 (3.27) 21.,24.,23. 2.,28.,20
4 persons standard (2.) 81.45 (1.62) 21.,23.,24. 16.,20.,3
Footwear (3.) 77.09 (1.22) 24.21.22. 12.,11.,4.
Speed (4.) 70.95 (2.20) 21.,23.24. 3.,19.,20.

7 Prototype Application: Context-aware Reminder

A prototype application was built based on single footstegmtification. A multi-class
Gaussian process classifier was learned from the trainitey s#a of four laboratory



Length scale

The number of feature

Fig. 3. RBF kernel length scales of each feature using a nine-pgxdata set. The horizontal axis
presents the feature number from Table 1 and and the vestkésildescribes the importance of
the feature, where a smaller length scale value means thedda more important.

Table 5. Total identification accuracies and feature ranking usifigrént data sets. The data sets
are described in Table 2 and features are presented in Tableelthree most relevant features
(mrf) and least relevant features (Irf) are shown

Train Test Accuracy (%) mrf Irf

Without sandals (6.) Sandals (5.) 59.68 24.23.21. 15513
Without trackers (8.) trackers (7.) 59.49 23.,24.,21. 18,9.
Shoes (9.) Without shoes (10.) 59.85 21.,24.23. 26.1.,14
Normal speed (11.) Without normal (12.) 48.60 21.,27.,24. LT3
Without slow (14.) Slow speed (13.) 57.66 21.,23.,24. 83.
Without fast (16.) Fast (15.) 41.01 21.23.,24. 1.20.,11.

members. In addition, the position of each footstep wasutatied using the center of
mass in the binary image. This very simple method is abledateone person at a time.
In the future, more advanced tracking methods will be apgbedetect the positions of
multiple simultaneous walkers.

The prototype was implemented as a distributed systemstomgof three different
levels, were each level provides information via TCP/IPksbcommunication. The
TCP/IP-based approach was chosen to leverage existirggiébrfor rapid prototyping,
which requires language independence. The first level gesviaw sensor data, which
is read by the identification system on the second level. Gler-level implementation
consists of a Windows DLL (VC++) for InfoFloor driver and 2aVCP/IP server soft-
ware. The identification system extracts features fromakedata and sets the identity
based on GP as well as position and the time stamp informatieach example. In this
application feature extraction needs to be implementedahtime. This was done by
monitoring the starting and ending times of connected lieaents on the floor, and
when these were detected micro-level features were cédelifeom the sensor area of
the footstep using both binary and grey-level presentafiter that macro-level fea-
tures were calculated based on the detection informatan the previous footstep. If
a certain time period (e.g., 5 seconds) expired without aeys, it was assumed that
the person has left the sensor area and the detection phstsgtisg over again. The



second level was implemented with Python language, asimegbsm the results section.
The recognition software worked in real time and it took norenthan 20 ms to pro-
cess the raw data into identification prediction (using tloeleh trained on four-person
data). The time between two adjacent footsteps was appateiyn500ms. The third
level is an application that reads identified events fromdkatification system. Along
with side information about the context of the environméntrovides reminders to a
user. The client program was implemented with Java. The ooets of the software
architecture are presented in Figure 4(a). In this appdinagcenario the user interface
is implemented with two displays. The first one is locatedvatibe refrigerator and the
second one is located near the entrance to a “smart room’F{gaess 4(b) and 4(c)).
The scenario, which assumes side information, is as follows

1. Nobu bought a bottle of milk a week ago and put it into the gefraitor. One week
later, when he is passing in front of the refrigerator, it ifies him of the expiring
status of the milk. Here, a mirror display is installed on thidge, and the fridge is
capable of determining the status of the contents.

2. Nobu, a Tokyo resident, is going on a trip to Kyoto. Althoughweather is fine in
Tokyo, the weather forecast says it will be rainy in Kyotce Tdmart room” knows
his schedule, i.e. date and location, as well as the ideofifthe person and the
walking direction. When he is leaving the room, a displayadled at the entrance
recommends him to take an umbrella with him because of tkeedst.

This prototype application shows a simple approach to usiigrally obtained
person identification information, recognized from watkif@long with the side infor-
mation), in a context-aware system.

Hi, Nobu! Your milk is expiring! Hi, Nobu! Take your umbrella!

It will rain in Kyoto in the afternoon

n)
r

Java Wrapper (JNI)
InfoFloor Driver
)

(DLL

| B
(@) Architecture ofb) Context-awaréc) Context-aware
the prototype. reminder above theeminder at the
refrigerator. entrance of the smart

room.

Fig. 4. Software architecture and scenarios in the prototype egubin.

8 Conclusions

In this paper we presented a floor sensor system based oty imdches as well as
methods for recognizing a persons identity based on sensasumements collected



from the floor. In addition we showed a prototype applicatlat uses the information
of a walkers identity and the position of footsteps to previdntext-aware reminders
for daily life. For the recognition purposes, a set of uséfatures were extracted from
the raw measurements. The measurements are presentecdsdrid grey-level im-
ages, which allow us to use basic image processing methatisiie higher-level fea-
tures. A variational Bayesian approximation of a multisslaGaussian process (GP)
classifier is used to identify the walkers. As a Bayesian oatthe GP gives the pos-
terior distribution of predicted class labels. This infation was used to combine the
classifier outputs of multiple footsteps using conventiatessifier combination rules.
This provides a simple approach to recognizing a sequenealking in an application
where a more accurate decision is needed. The total reamyréttes of nine different
subjects using individual footsteps as well as walking seges were 64% and 84%,
respectively. This is a very promising result using simpieby switch sensors.

Furthermore, GPs provide a flexible solution to model s&lade.g., the choice of
hyperparameters). We used a kernel that is able to weighfeattire’s dimensions dif-
ferently through hyperparameters. This provides autamatévance detection (ARD),
where the most important features get more weigh in a siityilareasurement. ARD
was used to train an accurate model and to analyze the inmperta individual fea-
tures. We analyzed the effect of different footwear andatams in walking speed on
identification accuracy. This kind of analysis is missimgnfrmost of the previous stud-
ies using floor sensors. In our experiments we found that bbthese variations have
an impact; walking speed variations have a larger negatipact. Moreover, the most
relevant features in all the tested data sets were relatfidtemce and duration between
footsteps as well as the duration of a single footstep profile
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