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Abstract. This paper describes methods and sensor technology used to iden-
tify persons from their walking characteristics. We use an array of simple binary
switch floor sensors to detect footsteps. Feature analysis and recognition are per-
formed with a fully discriminative Bayesian approach usinga Gaussian Process
(GP) classifier. We show the usefulness of our probabilisticapproach on a large
data set consisting of walking sequences of nine different subjects. In addition,
we extract novel features and analyse practical issues suchas the use of different
shoes and walking speeds, which are usually missed in this kind of experiment.
Using simple binary sensors and the large nine-person data set, we were able to
achieve promising identification results: a 64% total recognition rate for single
footstep profiles and an 84% total success rate using longer walking sequences
(including 5 - 7-footstep profiles). Finally, we present a context-aware prototype
application. It uses person identification and footstep location information to pro-
vide reminders to a user.
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1 Introduction

Providing context-aware services to the user by means of smooth human-computer in-
teraction requires natural and transparent ways to identify and locate users [1], [2], [3].

We present an approach to person identification based on human motion. More
specifically, we concentrate on a person’s style of walking,which presents behavioral
characteristics of biometrics and is very natural because no additional action is required
of the user. In this work, binary switch sensors are used to detect a person s walking
sequence. A binary switch sensory system consisting of an array of 300 sensors was
installed on the surface of the floor. Each 10 cm x 10 cm binary switch senses weight
affecting its surface. A 3m2 floor area was covered to collect data and to recognize
walkers.

User identification is based on statistical machine learning. We use a Gaussian pro-
cess (GP) classifier [4] with specific features extracted from the footstep profiles pro-
duced by the sensor array as well as features calculated between consecutive footsteps.



The usefulness of the GP as a fully Bayesian kernel method relies on the ability to
model uncertainty of data, which leads to automatic determination of hyperparameters
(e.g., the importance of different features). It also produces conditional posterior prob-
abilities of class labels (i.e., the degree of belonging to acertain class), which allows
extensions and different post-processing capabilities ofthe classifier. Feature extraction
itself is based on the standard methodology of image processing, as the sensor array
can be presented as a binary image. Different features are extracted from the binary im-
age based on single footstep profiles (e.g., length and widthcalculated from connected
components in the binary image) and from the sequence of walking (e.g., step length
and duration between consecutive footstep profiles). Alongwith these typical walker
identification features we examined more specific ones that were calculated from the
time-integrated signal. In practice, the binary signals were summed over time to form a
grey-level image, and then features such as mean, standard deviation, and the center of
mass were extracted from the connected components.

Data sets were collected from nine different subjects, including 20 walking se-
quences for each person. Each person wore their own shoes. Inaddition, four persons
walked at three different walking speeds (slow, normal, fast) and also with two different
pairs of shoes and without shoes. In the GP classification we examined the identifica-
tion based on single footstep profiles as well as the identification using information
from walking sequences (i.e., including multiple footstepprofiles). The importance of
different features were also analyzed.

This paper presents a simple yet modular floor sensor system that is able to iden-
tify persons based on their walking. It also describes an accurate classification method
that is simultaneously able to analyze and choose the most important features and pro-
duce posterior probability of ID labels for post-processing. Furthermore, the effect of
changes in walking speed and footwear is analyzed for the first time.

2 Related Work

Various floor sensor settings have been used to model human behavior for identifica-
tion, tracking, and other purposes in smart and interactiveenvironments as well as in
health care. In the early works by [5] and [6], footstep identification was based on a
small area of ground reaction force (GRF) sensors using nearest-neighbor and hidden
Markov model (HMM) methods, respectively. In the work by [7], human GRF-based
authentication system was developed for use as part of a surveillance system. Recently,
a sensor installation, collection of a large data set and experiments with a person ver-
ification scenario were presented in [8]. They used a GRF sensor with geometric and
holistic features along with a support vector machines classifier.

In [9], electromechanical films (Emfi) that measures dynamicpressure changes on
the floor surface were used for person identification. A comparison of different methods
(e.g., support vector machines and neural networks) was done. In addition, classifier
fusion techniques were applied to combine different feature sets and walking sequence
information to achieve a more reliable recognition system.

UbiFloor [10], uses simple ON/OFF switch sensors, and identification is based on
features of both single footsteps and walking calculated from five consecutive footsteps



on the floor. The sensor arrangement differs from our work, but the use of simple binary
sensors is most similar to ours from the application viewpoint. A multi-layer percep-
tron (MLP) neural network was used as a classifier. [11] developed a high-resolution
low-cost pressure sensor mat made of resistive switches. They also performed person
identification based on sequential features such as stride length, gait period, and heel-
to-toe ratio along with an Euclidean distance measure as a classifier.

A sensor approach similar to this work was established by [12]. However, they con-
centrated on human tracking applications based on Markov chain Monte Carlo meth-
ods. [13] presents a system that also uses binary ON/OFF sensors in which over 65,000
pressure switches in an area of 4m2 give a very high resolution to the modeling of the
details of single footstep profiles as an image of footprints. The floor was tested by de-
tecting humans and robots and discriminating between them.[14] reported the use of a
beneath-the-floor accelerometer and tactile sensors to model footsteps and footprints in
order to recognize gender. [15] covered the floor of an interactive space with hexagonal
pressure-sensitive floor tiles to detect the presence of users.

Besides identification and tracking, force plates have beenused to detect and clas-
sify simple human body movements, such as crouches and jumpsas well as standing up
and sitting down [16]. A lot of work has also been done in medical research domains,
including [17], where pattern recognition methods were used to classify different gait-
related injuries based on GRF sensor measurements.

In summary, this work present a unique sensor approach to person identification
([12] uses similar sensors but they are used in a tracking application). We also extract
novel features from the floor and analyze the importance of individual features as well
as the effect of walking speed variations and different footwear, which are typically not
included in the other studies related to floor-based identification. Our approach has a
direct possibility of combining sequential information from multiple footsteps based
on the classifier s posterior probability outputs. This is quite similar to [9], except that
further post-processing is not needed to get the confidence of labels.

3 Binary Switch Floor Sensor System

VS-SF55 InfoFloor sensor system made by Vstone Corporation(in Japan) [18] was
installed in our research laboratory. The system contains 12 blocks of 50 cm x 50 cm
sensor tiles. Each tile includes 25 10 cm x 10 cm binary switchsensors. A 3m2 area
was covered by altogether 300 sensors (see Fig. 1). The sensors use diode technology
and are able to detect over 200-250g/cm2 weight affecting the surface. Data were
collected from each sensor using a 16 Hz sampling rate and sent to a PC via an RS-232
serial interface. In the PC, a multi-threaded TCP-IP serverwas implemented to share
raw sensor data with client applications.

Compared with other floor sensor technologies (e.g., Emfi [9]), the advantages of
using this kind of floor sensor system are low cost, easy installation, and little need for
pre-processing to get the data (e.g., for positioning and identification). Moreover, the
sensor floor utilized in this paper is designed to be modular,which allows the sensor
area to be able extended incrementally. On the other hand, compared with cameras,
audio, or RFID technology, floor sensors are more stable, i.e, they do not suffer from



environmental changes. A drawback is that only very limitedinformation is obtained
from the binary floor compared with cameras or other floor sensor technologies (e.g.,
Emfi and GRF sensors). This is very challenging, especially in complex recognition
tasks such as person identification, where discrimination between different persons can
depend on very detailed differences in persons walking styles. One aim of this work
was to be able to extract such useful and discriminative information from this limited,
yet practical, sensor system.

Fig. 1. Arrangement of binary sensor tiles.

4 Discriminative Bayesian Classification: Gaussian Processes

Discriminative learning is a very effective way to train mappings from multidimensional
input feature vectors to class labels. Kernel methods, in particular, have become state-
of-the-art, due to their superior performance in many real-world learning tasks. Along
with the popular support vector machines (SVM) [19], Gaussian processes (GP) [4]
have recently been given much attention in the machine learning community.

Although the SVM method has many favorable properties, suchas good generaliza-
tion by finding the largest margin between classes, the ability to handle non-separable
classes via soft-margin criteria, non-linearity modelingvia explicit kernel mapping,
sparseness by presenting data using only a small number of support vectors, and global
convex optimization with given hyperparameters, it lacks some properties. One draw-
back of SVM is that it is directly applicable only in two-class problems. Thus, there
have been various attempts to generalize it for multi-classclassification. The simplest
and most popular methods are based on multiple binary classifiers using one-vs.-one
or one-vs.-rest approaches as well as error correcting output codes and directed acyclic
graphs, to name a few [20].

Another problem is the choice of a good model, which is very important in kernel-
based discriminative learning. This is due to the fact that agood solution is usually
dependent on a number of hyperparameters (which control theproperties of kernel map-
ping). In SVM, the hyperparameters (and possibly the good subset of features) need to
be found using ad-hoc methods such as cross-validation or other search-based methods.
When the number of hyperparameters or the number of featuresincreases, the search



space can become very large. Finally, SVM cannot directly give a confidence measure-
ment as an output, it only gives a decision as an unscaled distance from the margin in
the feature space. Posterior distribution over predicted class labels is a very important
property in many pattern recognition systems in order to be able to implement some
post-processing tasks (e.g., rejecting unreliable examples, combining multi-modal sen-
sor data, combining sequential data, etc.). There have beensome attempts to extended
SVM to give probabilistic outputs (see [21], for example). However, this method needs
to train another mapping to the SVMs output after the training based on parametric
sigmoid mapping. This makes the method more complicated andpossibly another vali-
dation data set needs to be optimized for post-processing mapping.

To tackle these problems, we apply a Bayesian approach to kernel-based learn-
ing via Gaussian process priors. We use the multi-class approach presented in [22],
which approximates a complex posterior probability by maximizing the variational
lower bound. By using a multinomial probit likelihood model, it is possible to derive
a full multi-class classifier as a combination of multiple regression models. These re-
gression models are coupled via the posterior mean estimates of another set of auxil-
iary variables, which gives a statistically dependent multi-class model. Add-hoc post-
processing is not needed. In addition, predictive distribution over unknown examples
provides direct confidence measurement as a conditional posterior probability of class
labels.

During the training phase of the classifier, Gaussian processes provide a possibility
to optimize the hyperparameters by maximizing the marginallikelihood via gradient-
based optimization routines [23], [4] or by setting a prior distribution for the hyperpa-
rameters and employing sampling methods such as importancesampling to get poste-
rior expectations [22]. We follow the approach used in [22],which uses exponential
distribution and a gamma distribution placed on its mean to form a conjugate pair. Fur-
thermore, by applying a radial basis function (RBF) kernel with individual length scale
parameters to each feature dimension, we can determine the importance of each feature
when optimizing the hyperparameters (i.e., automatic relevance detection (ARD)). This
is used to increase the accuracy of person identification as well as to analyze features in
different practical settings. One drawback of GPs is that all the training data are needed
in the classification phase. When a large data set is used, some sparse approximation
methods need to be applied [22]. In this paper, a full model isused due to its capability
of real-time performance in the prototype application.

5 Person Identification Based on Floor Sensors

5.1 Feature Extraction

As in typical pattern recognition systems, we need to extract some higher level features
from the raw data to be able to perform accurate identification. The binary switch sensor
floor forms a matrix where each sensor tile can be presented asa pixel in the image.
This allows us to apply standard image processing techniques to detect footsteps and to
extract features. We use two kinds of presentations: binaryand grey-level images.

A binary image is detected by summing up the sensor values over time, and then
thresholding each positive value to one. The summing is performed over each walking



sequence. A binary image gives us a direct way to detect the position of each footstep
in a sequence. This is done by labeling the 8-connected components of the image. Fur-
thermore, when collecting each individual image in a sequence, we are able to detect
the starting and ending time of each connected component forfeature extraction.

In addition, the integrated image (i.e., sequence of summedsensor matrices) is saved
without thresholding. This matrix presents a grey-level image in which each pixel forms
a duration value over the sequence and provides a possibility to extract a rich set of
features from the connected components. A “duration map” ispresented as a grey-level
image in Figure 2, where a brighter value means more time is spent in that position. A
binary image can be calculated by thresholding grey-level sensor values larger than 0
to 1.

Fig. 2.Grey-level image calculated from sensor measurements of a walking sequence. In addition,
the size of the sensor area is illustrated.

Feature extraction is based on the connected components found in the binary im-
age. The features can be divided into two categories: micro and macro-level features.
Micro-level features are extracted from each footstep using both the binary and grey-
level presentations. This feature set includes features such as the sum of binary pixels
in a single footstep profile. Minimum, maximum, mean, and standard deviation values
are also extracted from the grey-level component. All thesefeatures describe the shape
of the “duration map” inside a single footstep profile. To describe the spatial proper-
ties of shape, convolution filters, familiar from image processing, are used. We apply
four different 3x3 line detection filters and four different3x3 sobel gradient filters (see,
for example, [24] for details). After filtering, the values inside the connected compo-
nents are summed. Also, the length and width of the footstep,the compensated center
of masses, and the duration of the footstep are calculated. Macro-level features present
useful information between consecutive footsteps. We use Euclidean distances between
the center of mass points of adjacent footsteps as well as individual distances in the
longitudinal and transversal walking directions. They areclosely related to step length
measurement used in gait analysis. Finally, the duration between the starting times of
consecutive footsteps is calculated. Macro features are always calculated against the
previous footstep in a sequence. A total of 28 features were extracted and are presented
in Table 1. It is also straightforward to modify the footstepdetection and feature extrac-
tion techniques for a real-time application, which is discussed in section 7.



Table 1.Spatial, statistical, and time-related features derived from each footstep profile (1-20) as
well as between consecutive footstep profiles (21-28).

Number Name Description

1. sumbin Number of activated pixels (i.e. sensor tiles) in this footstep profile
2. sumgrey Sum of grey-level pixel values
3. mingrey Minimum grey-level value
4. maxgrey maximum grey-level value
5. meangrey Mean of grey-level pixels
6. stdgrey Standard deviation of grey-level pixels
7. sumvline Sum of grey-level component filtered with 3x3 line mask (vertical)
8. sumhline Sum of grey-level component filtered with 3x3 line mask (horizontal)
9. sumlline Sum of grey-level component filtered with 3x3 line mask (leftdiagonal)
10. sumrline Sum of grey-level component filtered with 3x3 line mask (right diagonal)
11. sumbgrad Sum of grey-level component filtered with 3x3 gradient mask (ball of the footstep)
12. sumrgrad Sum of grey-level component filtered with 3x3 gradient mask (right side of the footstep)

13. sumhgrad Sum of grey-level component filtered with 3x3 gradient mask (heel of the footstep)
14. sumlgrad Sum of grey-level component filtered with 3x3 gradient mask (left side of the footstep)

15. lengthbin Maximum length of connected binary pixels (longitudinal direction of walking)
16. widthbin Maximum width of connected binary pixels (transversal direction of walking)
17. combinx

Center of mass of connected binary pixels (longitudinal direction of walking)

18. combiny
Center of mass of connected binary pixels (transversal direction of walking)

19. comgreyx Center of mass of connected grey-level pixels (longitudinal direction of walking))
20. comgreyy Center of mass of connected grey-level pixels (transversaldirection of walking)

21. durationinside Duration of footstep (i.e., activated tiles over time)
22. distancebin Euclidean distance from previous footstep (using binary center of mass)
23. distancegrey Euclidean distance from previous footstep (using grey-level center of mass)
24. durationbetween Duration from the previous footstep (to beginning time of this footstep in milliseconds)
25. distancebinx

Longitudinal distance from previous footstep (using binary center of mass)
26. distancebiny

Transversal distance from previous footstep (using binarycenter of mass)

27. distancegreyx Longitudinal distance from previous footstep (using grey-level center of mass)
28. distancegreyy Transversal distance from previous footstep (using grey-level center of mass)

5.2 Person Identification: Single Footsteps and Walking Sequences

We derive two kinds of person identification methodologies based on the multi-class
Gaussian process classification and features presented in the previous section. The first
one is a conventional classification scenario where we use posterior distribution of class
labels predicted from a single footstep profile to make the decision. In this case we use
micro-features as well as macro-features related to the previous footstep. This scenario
is useful in situations where the decision has to be made as quickly as possible.

On the other hand, if we want more accurate recognition, we can use classification
information from multiple adjacent footstep profiles by combining the posterior distri-
bution of class labels. This scenario gives a recognition based on a sequence, which in
this case is one walking sequence (5-7 footsteps) on the floor. As GP classification pro-
vides posterior over class labels, we can use summation and product rules to combine
the outputs. This kind of rule has been shown to be simple, yetpowerful, in many infor-
mation fusion problems [25]. The advantage is that we can usea conventional training
phase and an arbitrary number of examples in a sequence to make the final decision.
If P (ωk|xi) represents the posterior probability of class labels (1 . . . n) conditioned on
unknown examplexi andS is the total length of a sequence, the final decision can be
calculated using the sum (Eq. 1) and product rule (Eq. 2), as follows:

ωc =
n

argmax
k=1

[

S
∑

i=1

P (ωk|xi)
]

(1)

ωc =
n

argmax
k=1

[

S
∏

i=1

P (ωk|xi)
]

(2)



The disadvantages of using this kind of scenario are relatedto optimization. Due
to the fact that the model is trained on single footsteps, it does not use information of
sequences to find a global optimum. In addition, the choice ofcombination rules in our
scenario is more ad-hoc and experimental compared with approaches where sequential
information is directly learned from the data. However, this simple approach is able
to use the information of walking sequences at some level to be able to produce more
accurate decisions, as is shown in the results section. A comparison with more advanced
models, such as sequential kernels and other sequential classifiers, is left for future
work.

6 Results

6.1 Data sets

To test the identification methods presented here, we collected a large data set. The
data set included walking sequences of nine different subjects. The test group consisted
of two female and seven male subjects, and each wore their ownshoes (which were
indoor sandals in this case). They were told to walk their natural walking speed over
the sensor floor (from A to B in Figure 2) 20 times. To get as natural a data set as
possible, the starting foot or the absolute position of eachfootstep in the sequence was
not constrained in any way. Each sequence included 5-7 footstep profiles, depending on
the stride length of the subject. Altogether 1143 footstep profiles were collected from
the nine walkers.

In addition, to examine the effect of different walking styles (i.e., walking speed)
and footwear on identification, we collected more data from four subjects. To study
variations in walking speed, we recorded additional sequences in which the subjects
were told to walk slower and faster than usual. Both settingswere performed 10 times.
To test the effect of different footwear, 20 sequences of subjects wearing their own
outdoor trackers and no shoes at all were collected. Combining this data set with the
footsteps of the four persons collected earlier gave us 1981footstep profiles for studying
the effect of variation in walking speed and footwear.

A total of 2597 footstep profiles were collected in these sessions. To test and ana-
lyze the usefulness of the features and the classification method as well as the modeling
capability of the features and adaptation of the classifier to novel data, we split the data
set into different subgroups. The standard nine-person data set included 20 sequences of
normal walking speed and sandals for studying the extractedfeatures and the capability
to perform multi-class classification using Gaussian processes. To analyze the effects
of variations on the extracted features more precisely, thefootstep profiles of four per-
sons were divided into three subgroups: standard (including walking at normal speed
and with sandals), footwear (including three different footwear at normal speed), speed
(including three different speeds with sandals on). The aimof these data sets was to be
able test how well the extracted features can handle variations in the data set and which
features have the best discriminative power in these settings.

Furthermore, we split the four-person data set into 12 subgroups: sandals (including
all the data from sandals), without sandals (all the data except from sandals), trackers
(including data from outdoor shoes), without trackers (including all the data except



from trackers), without shoes (including the session without shoes), shoes (including
the session with shoes), normal (including normal speed), not normal (including slow
and fast walking), slow (including slow walking), not slow (including normal and fast
walking), fast (including fast walking), not fast (including slow and normal walking).
These data sets were used to examine the generalization capability of the classifier
and the need for adaptation when the test data set includes differently distributed (in
this case walking speed and footwear) data. These are very important when building
practical applications. A summary of the data set categories is presented in Table 2.

Table 2.Summary of different data set categories used in the person identification experiments

Number Name Description Number of examples number of sequences

1. 9 persons standard Normal walking speed with sandals 1143 180
2. 4 persons standard Normal walking speed with sandals 527 80
3. Footwear Normal walking speed with footwear variations 1516 240
4. Speed Slow, normal, and fast walking speed with sandals 992 160
5. Sandals All the data with sandals 992 160
6. Without sandals All the data without sandals 989 160
7. Trackers All the data with trackers 441 80
8. Without Trackers All the data without trackers 1540 240
9. Shoes all the data with shoes 1433 240
10. Without Shoes All the data without shoes 548 80
11. Normal All the data with normal speed 1516 240
12. Without normal All the data without normal speed 465 80
13. Slow All the data with slow speed 248 40
14. Without slow All the data without slow speed 744 180
15. Fast All the data with fast speed 215 40
16. Without fast All the data without fast speed 755 180

6.2 Person Identification

In this section we present the recognition result of using the nine-subject data set de-
scribed in Section 6.1. We split the data set so that 2/3 were used for training and 1/3 for
testing, and all the features were scaled between 0 and 1. Variational GP approximation
was achieved using 10 iterations, simultaneously learningthe hyperparameters of the
RBF kernel [20], [22]. This was repeated 10 times on randomlychosen training and
test sets. All the tests were implemented with Python programming language and the
GP models were trained with an R language variational Bayesian GP package [26].

Furthermore, sequential recognition was tested by combining the GP outputs using
similarly trained models and fixed sum and product rules. Table 3 presents the average
total identification (and standard deviations) of single footstep profiles as well as com-
bined recognition rates. The classifier is able to classify correctly 64% of the individual
footsteps, which shows the complexity of the data set obtained from the simple binary
switch sensors. Using the fixed combination rules increasesaccuracy and the product
rule outperforms the sum rule in this data set, showing an 84%success rate. The results
show that to achieve a high success rate, sequential information is needed.

Table 3.Total identification accuracies of recognizing nine different walkers

GP (single examples) GP (sum rule) GP (product rule)

Accuracy (%) 64.23 (3.27) 82.33 (6.59) 84.26 (6.69)



6.3 Feature Analysis of Footwear and Walking Speed Variations

This section presents the results of analyzing the effect ofdifferent footwear and walk-
ing speed variations. Moreover, we rank the individual features based on their relevance
in the identification method to determine which are the best and worst ones. To our
knowledge, this is the first time both footwear and walking speed changes are analyzed
in the context of floor sensors. These are very important issues when building a practical
identification system.

We used the different four-person data sets presented in Table 2, where we summa-
rize the total success rates (accuracy) as well as the most relevant features (mrf) and
least relevant features (lrf) (cf. Table 1 for the order number of the features). Table 4
presents the results using standard data sets and footwear/speed variations. Looking at
the accuracies, the total number of persons in a classification has a large impact (nine
persons vs. four persons.). Secondly, footwear variation slightly decreases accuracy
compared with the standard data set (4.36 percent units). Walking speed decreases ac-
curacy much more (10.50 percent units). In all the data sets,the most important features
are related to walking sequence (i.e.,distancebin, distancegrey, durationbetween) and
the duration of footsteps. The least relevant features change, but are always related to
micro-features. These results indicate that when using limited binary sensors, the use
of features carrying sequential information is very important. The average length scales
of each feature in the nine-person data set are presented in Figure 3. A smaller value
means the feature is more important in the classification decision. The walking sequence
features are the most important, but footstep shape features (e.g., calculated by the con-
volution filters) have a large impact, too (e.g., features 8,10 and 14)

Similar experiments are shown in Table 5. Now the test set contains variations (i.e.,
footwear and walking speed) that are not included in the training data set. This is the
most complex approach presented in the paper. Clearly, a large decrease in total accu-
racies can be seen when comparing the results with those in Table 4. This indicates that
it is important to collect and use all available informationfor training if these variations
are assumed to happen. Similarly, it can be concluded that speed variations have a larger
negative impact on accuracy compared with footwear variations. Interestingly, the same
features as in the above data sets have the most relevant information for identification,
on average.

Table 4.Total identification accuracies and feature ranking using different datasets. The data sets
are described in Table 2 and the features are presented in Table 1. The three most relevant features
(mrf) and least relevant features (lrf) are shown

Dataset Accuracy (%) mrf lrf

9 persons standard (1.) 64.23 (3.27) 21.,24.,23. 2.,28.,20.
4 persons standard (2.) 81.45 (1.62) 21.,23.,24. 16.,20.,3.
Footwear (3.) 77.09 (1.22) 24.,21.,22. 12.,11.,4.
Speed (4.) 70.95 (2.20) 21.,23.,24. 3.,19.,20.

7 Prototype Application: Context-aware Reminder

A prototype application was built based on single footstep identification. A multi-class
Gaussian process classifier was learned from the training data set of four laboratory



Fig. 3.RBF kernel length scales of each feature using a nine-persons data set. The horizontal axis
presents the feature number from Table 1 and and the verticalaxis describes the importance of
the feature, where a smaller length scale value means the feature is more important.

Table 5.Total identification accuracies and feature ranking using different data sets. The data sets
are described in Table 2 and features are presented in Table 1. The three most relevant features
(mrf) and least relevant features (lrf) are shown

Train Test Accuracy (%) mrf lrf

Without sandals (6.) Sandals (5.) 59.68 24.,23.,21. 15.,13.,5.
Without trackers (8.) trackers (7.) 59.49 23.,24.,21. 13.,16.,9.
Shoes (9.) Without shoes (10.) 59.85 21.,24.,23. 26.,1.,14.
Normal speed (11.) Without normal (12.) 48.60 21.,27.,24. 5.,7.,3.
Without slow (14.) Slow speed (13.) 57.66 21.,23.,24. 5.,3.12.
Without fast (16.) Fast (15.) 41.01 21.,23.,24. 1.,20.,11.

members. In addition, the position of each footstep was calculated using the center of
mass in the binary image. This very simple method is able to locate one person at a time.
In the future, more advanced tracking methods will be applied to detect the positions of
multiple simultaneous walkers.

The prototype was implemented as a distributed system consisting of three different
levels, were each level provides information via TCP/IP socket communication. The
TCP/IP-based approach was chosen to leverage existing libraries for rapid prototyping,
which requires language independence. The first level provides raw sensor data, which
is read by the identification system on the second level. The lower-level implementation
consists of a Windows DLL (VC++) for InfoFloor driver and Java TCP/IP server soft-
ware. The identification system extracts features from the raw data and sets the identity
based on GP as well as position and the time stamp informationof each example. In this
application feature extraction needs to be implemented in real time. This was done by
monitoring the starting and ending times of connected binary events on the floor, and
when these were detected micro-level features were calculated from the sensor area of
the footstep using both binary and grey-level presentation. After that macro-level fea-
tures were calculated based on the detection information from the previous footstep. If
a certain time period (e.g., 5 seconds) expired without any events, it was assumed that
the person has left the sensor area and the detection phase isstarting over again. The



second level was implemented with Python language, as presented in the results section.
The recognition software worked in real time and it took no more than 20 ms to pro-
cess the raw data into identification prediction (using the model trained on four-person
data). The time between two adjacent footsteps was approximately 500ms. The third
level is an application that reads identified events from theidentification system. Along
with side information about the context of the environment,it provides reminders to a
user. The client program was implemented with Java. The components of the software
architecture are presented in Figure 4(a). In this application scenario the user interface
is implemented with two displays. The first one is located above the refrigerator and the
second one is located near the entrance to a “smart room” (seeFigures 4(b) and 4(c)).
The scenario, which assumes side information, is as follows:

1. Nobu bought a bottle of milk a week ago and put it into the refrigerator. One week
later, when he is passing in front of the refrigerator, it notifies him of the expiring
status of the milk. Here, a mirror display is installed on thefridge, and the fridge is
capable of determining the status of the contents.

2. Nobu, a Tokyo resident, is going on a trip to Kyoto. Although the weather is fine in
Tokyo, the weather forecast says it will be rainy in Kyoto. The ”smart room” knows
his schedule, i.e. date and location, as well as the identifyof the person and the
walking direction. When he is leaving the room, a display installed at the entrance
recommends him to take an umbrella with him because of the forecast.

This prototype application shows a simple approach to usingnaturally obtained
person identification information, recognized from walking (along with the side infor-
mation), in a context-aware system.

(a) Architecture of
the prototype.

(b) Context-aware
reminder above the
refrigerator.

(c) Context-aware
reminder at the
entrance of the smart
room.

Fig. 4. Software architecture and scenarios in the prototype application.

8 Conclusions

In this paper we presented a floor sensor system based on binary switches as well as
methods for recognizing a persons identity based on sensor measurements collected



from the floor. In addition we showed a prototype applicationthat uses the information
of a walkers identity and the position of footsteps to provide context-aware reminders
for daily life. For the recognition purposes, a set of usefulfeatures were extracted from
the raw measurements. The measurements are presented as binary and grey-level im-
ages, which allow us to use basic image processing methods toderive higher-level fea-
tures. A variational Bayesian approximation of a multi-class Gaussian process (GP)
classifier is used to identify the walkers. As a Bayesian method the GP gives the pos-
terior distribution of predicted class labels. This information was used to combine the
classifier outputs of multiple footsteps using conventional classifier combination rules.
This provides a simple approach to recognizing a sequence ofwalking in an application
where a more accurate decision is needed. The total recognition rates of nine different
subjects using individual footsteps as well as walking sequences were 64% and 84%,
respectively. This is a very promising result using simple binary switch sensors.

Furthermore, GPs provide a flexible solution to model selection (e.g., the choice of
hyperparameters). We used a kernel that is able to weigh eachfeature’s dimensions dif-
ferently through hyperparameters. This provides automatic relevance detection (ARD),
where the most important features get more weigh in a similarity measurement. ARD
was used to train an accurate model and to analyze the importance of individual fea-
tures. We analyzed the effect of different footwear and variations in walking speed on
identification accuracy. This kind of analysis is missing from most of the previous stud-
ies using floor sensors. In our experiments we found that bothof these variations have
an impact; walking speed variations have a larger negative impact. Moreover, the most
relevant features in all the tested data sets were related todistance and duration between
footsteps as well as the duration of a single footstep profile.
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