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ABSTRACT

This paper presents an approach to tracking persons using Gaus-

sian Processes (GP) and Particle Filtering (PF). We used a binary

switch sensor floor, which provides a natural and transparent way

to build an indoor positioning and tracking system. However, it

poses many challenges by producing nonlinear non-Gaussian mea-

surements of true location. To solve these issues we present a novel

algorithm. It uses PF for Bayesian tracking and data association

combined with learned GP regression to correct estimates. Fur-

thermore, the proposed algorithm, called Gaussian Process Joint

Particle Filtering (GPJPF), handles multiple targets, where each

particle models the targets’ states jointly. To handle the data as-

sociation problem and interaction between targets in close prox-

imity, a Markov Random Fields (MRF) -based motion model was

applied. Along with the GP model, it can be used directly as an

additional factor when calculating the importance weights of par-

ticles. In comparison, the proposed method outperforms conven-

tional Gaussian process and particle filtering methods.

1. INTRODUCTION

Tracking user positions from uncertain sensor information is very

important when building smart, context-aware, and interactive en-

vironments [1] for example to be able to monitor daily routines or

abnormal behavior, or to provide personalized services for users

acting in an environment. A common approach employed in smart

environments is to use video- and audio-based techniques [2, 3].

Although those sensors can provide rich information about users

and the environment, vision-related systems could suffer from dif-

ferent lighting conditions and occlusion, and audio-related sys-

tems, from background noise, for instance. Another popular ap-

proach is to use WLAN positioning with mobile devices or RF,

ultrasound, and infrared systems [1, 4]. The required wearable

sensors can limit the user’ s mobility or the user can easily forget

to take the device along when acting in the environment.

This paper combines methods to presents novel algorithms and

an alternative sensor approach to tracking persons in ubiquitous

computing environments. Instead of placing individual sensors on

every target in the environment, a floor sensor can be used as an en-

vironmental sensing system to recognize and locate active targets

simultaneously. As a first step towards a smart environment, we

concentrated on person localization and tracking using a sensory

system installed on the floor surface.
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Quite similar to this work, Murakita et al. [5] presented a bi-

nary sensory system to track persons. It uses the Particle Filter-

ing (PF) [6] technique to perform sequential position predictions

using two different kinds of measurement models. However, in-

stead of assuming known initial positions, we extended PF-based

Bayesian filtering to a more general and practical approach that

deals with multiple persons entering and leaving the sensor area at

arbitrary time steps. We also present a flexible Gaussian Processes

(GP) [7] -based model for learning to track human motion using

displacement expert [8]. We derived an algorithm that combines

state estimation with accurate GP-based correction and importance

weighting steps. In addition, we extended our approach to multiple

persons by adding a Markov Random Fields-based motion model

[9] to handle interaction between persons as well as models for

detecting persons entering and leaving the sensor area. Previously,

GPs and PFs have been applied differently to tracking in computer

vision [10, 11, 12, 13] and robotics [14, 15], for instance. To sum-

marize, the contributions of the work are: combining Gaussian

Process regression and Particle Filtering into a novel person track-

ing algorithm, extending the algorithm to handle a variable number

of interacting persons entering and leaving the sensor area as well

as applying the algorithm to a real-time tracking system using a

novel floor sensor setting.

2. TRACKING METHODOLOGY

2.1. Gaussian Process Regression

Gaussian Processes (GP) [7] are a non-parametric probabilistic ap-

proach to learn kernel machines and have received a lot of atten-

tion in the machine learning community in recent years. They

provide many useful advantages over Support Vector Machines

(SVM) [16] and variants such as the ability to model uncertainty of

estimates directly and perform model selection based on Bayesian

inference.

The Gaussian process is a collection of random variables that

have a joint Gaussian distribution. These random variables rep-

resent the value of the function f(x) at a given location, and the

GP is completely specified by its mean m(x) = E[f(x)] and co-

variance functions k(x,x′) = E[f(x)−m(x)]−m(x′), and they

present the Gaussian process f(x) ∼ GP(m(x), k(x,x′)), where

x and x′ are two input feature vectors.

Let X = [x1 . . .xN ]T be a training dataset of N x D di-

mensional input feature data matrix and y = [y1 . . . yN ]T an N

x 1 dimensional vector of continuous targets. In the Gaussian

process the regression output is modeled using a noisy version

of function y = f(x) + ǫ. Assuming the additive independent



identically distributed Gaussian noise ǫ, the posterior probability

of latent functions is analytically solvable and leads to Gaussian

predictive distribution f
∗

= kT
∗ (K + σ2

nI)
−1y and V[f∗] =

k(x∗,x∗)−kT
∗ (K+σ2

nI)
−1k∗, where f

∗
and V[f∗] are the mean

and variance predictions of an unknown input example, respec-

tively. k∗ is the vector of covariances between the test example

x∗ and training examples, K is the matrix of covariances between

training examples X, k(x∗,x∗) is the covariance between a test

example x∗ and itself. y are the output targets in the training data

set and σ2

n is noise variance.

The covariance function specifies prior knowledge and simi-

larity between examples. Many different Mercel covariance func-

tions producing positive semi-definitive kernel matrix are presented

in the literature [7]. One of the most popular is the Squared Expo-

nential (SE) (or Gaussian) covariance function k(x,x′) =
σ2

f exp(− 1

2l2
||x − x′||2), where σ2

f is signal variance and l is a

length scale.

Typically, the covariance function will have some free param-

eters (such as σ2

f , l). Training the GP regression model is to de-

termine the values of the hyperparameters. Using the SE covari-

ance function and independent noise variance σ2

n we can collect

these hyperparameters into the common vector Θ = [σ2

f , l, σ
2

n].
The hyperparameters Θ can be learned by maximizing the log

marginal likelihood (or evidence) log p(y|X,Θ) = − 1

2
yK−1

y −
1

2
log |Ky | −

n
2

log 2π of training data D = (X,y), where Ky =

K + σ2

nI . This objective function can be optimized, for example,

using gradient-based methods [7]. In position tracking we usually

need to estimate more than one dimension, so a multi-output re-

gression model needs to be implemented. We apply a coupled GP

where the noise of each dimension is handled independently, but a

block-diagonal covariance matrix with common hyperparameters

is applied to model correlation between different dimensions by

learning the hyperparameters from the data [17].

2.2. Learning the Displacement Expert

In online tracking applications we are interested in modeling dy-

namic events such as position transitions. GP regression can be

trained to predict continuous outputs from input features. In visual

tracking, Williams et al. [8] proposed an algorithm to train a dis-

placement expert (i.e., the regressor) between a high-dimensional

image space and a low-dimensional state space such as position,

pose, and other continuous variables. As an alternative to pre-

dicting true position (or other variables), we can try to predict the

difference between true position and some estimate. The advan-

tage is that we do not need to collect a huge data set of training

examples, but can use a small set of seed examples (e.g., images)

and then sample the displacement of these examples, for example,

from their uniform distribution y ∼ uniform(−∆,∆), where ∆
is the displacement range from spatial location coordinates. Dis-

advantages are that compared to conventional Bayesian filtering,

offline training period is needed. Moreover, in some applications

it would be problematic to determine the true target position to

collect training data.

Figure 1 presents an example pattern from the floor sensor

studied in this work during single foot contact. In the case of two

feet contact, we could set the true position to centre of mass point.

To calculate features we can use, for example, a rectangle centered

at the true position and sample the training examples from it. Let

vector u = [uv , uh] present physical vertical uv and horizontal

uh location coordinates on the floor. If we transform the mea-

I1(u)I2(u) I3(u)

−∆uv2

−∆uh2

∆uv3

∆uh3

f(I1(u))f(I2(u)) f(I3(u))

x1 = [0 0 . . . 1 1 . . . 0 0 ]x2 = [0 1 . . . 0 1 . . . 0 0 ] x3 = [0 0 . . . 1 0 . . . 0 1 ]

y1 = [0 0]y2 = [−∆uv2 − ∆uh2] y3 = [∆uv3 ∆uh3]

Fig. 1. Example procedure of sampling with displacements. The

solid rectangle above is the region of interest of the black target.

Two rectangles with dashed lines are sampled from the original

region of interest, which leads to the spatial displacement regions

below.

surements from the rectangle to input feature vector x = f(I(u))
and the displacement to output target vector y = [∆uv,∆uh],
we can learn the mapping between the input and output using the

GP model presented in section 2.1. The algorithm presented in

[8] can be used to collect a training data set by sampling from the

seed examples and transforming the examples to feature vectors

and the displacements to corresponding output values. Finally, the

displacement expert, such as a GP regressor, can be learned from

the data set.

After the training, the GP model can be used to predict the

displacement, and more interestingly in a tracking application, to

estimate the current position ut from the previous position ut−1

by ut = ut−1 +GPµ(x), where x is an input example. Now the

prediction is based on the GP mean (i.e., point prediction) alone.

The following section shows how the uncertainty estimation of GP

(i.e., the variance of displacement) can be applied to sequential

Bayesian filtering framework.

2.3. Joint Particle Filtering

Particle filtering (PF) [6] is an approximation method for nonlinear

non-Gaussian dynamic sequential modeling, and it is very useful,

e.g., in online tracking applications in environments with uncer-

tain sensor measurements. There are many ways to extend particle

filtering to multiple-target tracking. The simplest approach is to

use multiple independent filters, one for each target. However,

when the targets are close to each other and the measurements are

noisy, independent filters lose their ability to keep the track of in-

dividual targets, and the target with the strongest measurements

and best likelihood score will capture nearby targets. In [18] a

mixture particle filter approach was developed. It uses an indepen-

dent filter for each target. These components then form a mixture

model where interaction between targets is handled by the mixture

weights. The standard SIR particle filter can be embedded in the

iterations, but a clustering method is needed to keep the mixture

model updated. This could be problematic in settings where mea-

surement of targets is multi-modal, sparse, and too similar over the



group of targets.

Multiple target tracking can also be formulated using a Joint

Particle Filter (JPF) [9] presentation where each particle captures

the state u of all the targets jointly. Similarly to the mixture ap-

proach, we can sample from the motion model and set the likeli-

hood score for each target independently p(ut|ut−1) ∝
Q

i p(u
i
t|u

i
t−1). Moreover, likelihood scores can be calculated in-

dependently for each target and then used to form a factored like-

lihood model p(zt|ut) ∝
Q

i p(z
i
t|u

i
t). The detailed presentation

can be found in [9].

2.4. Markov Random Fields for Target Interaction

In multiple target tracking, the most problematic settings are re-

lated to cases where targets are currently located physically near

to each other. This is known as a data association problem, where

it is difficult to decide which target produces which of the measure-

ments. Khan et al. [9] presented a multi-target interaction model

applied to a Joint Particle Filter based on the Markov Random

Fields (MRF) [19] motion model. Their application consisted of

visual tracking multiple similar interacting targets, where the mo-

tion of individual targets is affected by the motion of nearby targets

[9]. We applied a similar MRF model, but our goal was two-fold.

First, the motions of interacting persons affect each other. Sec-

ond, we can apply a more accurate measurement model to the data

association problem (e.g., handling false alarm measurements).

MRF [19] is an undirected graph G = (V,E), where random

variables are presented as nodes (i.e., vertices V ), and dependen-

cies between nodes are presented as undirected edges (E). Joint

probability is factored as a product of local potential functions at

each node, and interactions are defined in neighborhood cliques.

Following [9], we used pairwise MRF, where the cliques are pairs

of nodes connected by the edge in the graph. The pairwise interac-

tion potentials ψ(ui,uj) are expressed by means of the Gibbs dis-

tribution in the log domain ψ(ui,uj) ∝ exp(−g(ui,uj)), where

g(ui,uj) is a penalty function and could be set using the degree

of overlap when targets interact. When MRF is dynamically con-

structed at every time step t, the factored motion model becomes

p(ut|ut−1) ∝
Q

i p(u
i
t|u

i
t−1)

Q

i,j∈E ψ(ui
t,u

j
t).

The MRF motion model can be directly embedded in the Joint

Particle filter using the factored likelihood expression wt =
wt−1

Qn
i=1

p(zi
t|u

i
t)

Q

i,j∈E ψ(ui
t,u

j
t ), wherewt is the weight of

the particle, p(zi
t|u

i
t) is the likelihood score of the i:th target, and

ψ(ui
t,u

j
t) is the interaction term between targets i and j, respec-

tively.

3. GAUSSIAN PROCESS JOINT PARTICLE FILTERING

Using the tracking methodology presented in section 2, it is straight-

forward to combine these methods into a novel tracking algorithm,

Gaussian Process Joint Particle Filtering (GPJPF). The proposed

real-time tracking algorithm follows the standard phases of the

Bayesian filter, and more specifically the Sampling Importance

Resampling (SIR) Particle Filter [6]. As prior knowledge, we de-

termined the motion model (i.e., how the states evolve over time)

for where to sample at each time step to predict the target location.

Furthermore, we collected a training data set of feature vec-

tors from regions of interest as well as the output targets of po-

sition displacements (cf. Figure 1). A discriminative probabilistic

Gaussian Process regressor was trained between the measurements

and the displacements from the true positions. The advantages

of using machine learning are that we could use a simple motion

model (e.g., prior linear Gaussian transition) and model possible

non-linearities with the trained GP. It provides a prediction of dis-

placement as well as an uncertainty measure (as a variance of dis-

placement), which could be added directly to the correction step

of the Bayesian filter, eliminating the need to build a measurement

model separately.

Let ut be the state estimate predicted using the motion model

and GPµ(x) = f
∗

and GPΣ(x) = V[f∗] be the mean and covari-

ance of the predicted GP displacement of x = f(I(ut)) (or more

precisely, of the region of interest centered at ut). The GP-based

correction can be calculated as follows

ũt = ut +GPµ(x) (1)

and the update equation for the particle importance weighting wt

becomes wt = wt−1N (ũt;ut, GPΣ(x)).

To handle multiple targets, and possibly a variable number of

targets, we can extend the proposed tracking algorithm using a

couple of more phases and the joint state presentation. Adding the

factored likelihood presentation and MRF-based interaction, the

importance weight update calculation can be presented as

wt = wt−1

n
Y

i=1

N (ũi
t;u

i
t, GP

i
Σ(x))

Y

i,j∈E

ψ(ũi
t, ũ

j
t ) (2)

where GP i
µ(x) = ũi

t − ui
t, GP i

µ(x), and GP i
Σ(x) are the dis-

placement GP mean and covariance of the i:th target in particle ut

and ψ(ũi
t, ũ

j
t) is the MRF interaction term between GP-corrected

targets i, and j, respectively. GP corrections are calculated inde-

pendently for each target, similar to Eq. 1.

4. GPJPF TRACKING ON SENSOR FLOOR

A VS-SF55 InfoFloor sensor system made by Vstone Corporation

(in Japan) was used in this work. The system contains 12 50 cm

x 50 cm sensor tiles. Each tile includes 25 10 cm x 10 cm bi-

nary switch sensors. A 3 m2 area was covered by altogether 300

sensors. The sensors use diode technology and are able to detect

a minimum weight of 200-250 g/cm2 on the surface. Data were

collected from each sensor using a 16 Hz sampling rate.

In a multiple-person tracking scenario, the sensor setting faces

many challenges. When the persons are producing multiple pat-

terns with both feet (see Figure 5) and are physically near to each

other in the sensor area, it is difficult to determine the center point

of each person. We need to associate each measurement pattern

with a different person. To overcome this problem, we can use the

proposed method where part of the tracking technique is learned

from the data, and prior knowledge of the persons’ previous posi-

tions are applied to a Bayesian temporal filtering framework.

The state space model in our system is a simple stationary first-

order Markov process, where target state p(ut|ut−1) ∼ ut is ap-

proximated from the targets previous state ut−1. The extension

to constant velocity or more advanced motion model is straight-

forward. Following the expression of the Gaussian measurement

model, we can apply GP prediction to importance sampling. Let

GPµ = GPµ(x) represent the GP mean displacement of x, cen-

tered at particle u, and the d x d dimensional GP displacement

covariance matrix is GPΣ = GPΣ(x). The GP-based measure-

ment model becomes

p(zt|ut) =
1

(2π)d/2
p

|GPΣ|
exp[−

1

2
(GP T

µ GP
−1

Σ
GPµ)]. (3)
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Fig. 2. A flowchart of the GPJPF tracking system.

Novel targets are recognized using current measurements (clus-

tering center-of-mass points of connected components on the floor)

corrected with the GP model and existing particles by calculating

distances between the spatial center of particle set clusters and po-

sition candidates. If the candidate point distance is not less than

the given threshold from existing particles, a novel target position

is initialized. When an existing target leaves the sensor area, the

particle component is removed from the joint presentation. If the

prediction of the current particles is far from the measurements

(i.e., larger than a given threshold), it is deleted from each par-

ticle. When two (or more) targets interact (or walk near to each

other), the current particle distribution can overlap and discrimi-

nation between targets is impossible. In such a case we can use

the interaction potentials of the MRF to re-weight the particles by

calculating the potentials between nearby targets. Particles in the

non-overlapping area are given more weight and more probably

survive after the resampling step, whereas interacting particles in

overlapped area are discarded. Flowchart of the GPJPF tracker is

presented in Figure 2.

5. RESULTS

5.1. Experimental Settings

In this study we compare the proposed method to three other sam-

pling based methods and their GP-based variants. The first method

was Independent Particle Filtering (IPF), where each target is mod-

eled with a single independent particle set as well as its GP vari-

ant (GPIPF). The second method was Mixture Particle Filtering

(MPF) [18] where each target is modeled with an independent par-

ticle set component, but the targets interact via a common mixture

weight presentation. We modified the original algorithm by re-

moving the splitting and merging steps (see [18]) and adding the

MRF-based motion model. Furthermore, its GP variant (GPMPF)

was examined. Finally, Joint Particle Filtering (JPF) and the pro-

posed Gaussian Process Joint Particle Filtering (GPJPF) were tested.

In these methods each particle represented the state space of every

target being tracked.

A single GP model was trained from 4 persons’ data sets of

50 examples. The examples were sampled from the walking se-

quences performed by the each subject at once, and no training

data from actual multi-person walking sequences were used. A 60

cm x 60 cm region of interest was used, providing a 6 x 6 feature

area and a 36-dimensional input feature vector when using 10 cm x

10 cm sensor tiles. A squared exponential kernel was applied and

the hyperparameters were trained using the marginal likelihood.

The stationary motion model was applied by setting the noise vari-

ances to 20 cm. The Gaussian measurement model with 60 cm

noise was applied to conventional PFs, and GP-based PFs were

equipped with a GP-driven measurement/correction steps in Equa-

tions 1 and 3. In the entering and leaving models the appearance

and disappearance probability thresholds were set at 0.0 and 1.0.

For the MRF interaction terms, similar to [9], the linear interac-

tion function γp was used. p is the area of overlapping between

two targets and was set at 2.0. In later experiments we studied the

influence of interaction by changing the value of γ.

To test and compare the different methods, altogether 70 walk-

ing sequences, including 8539 data frames, were collected from 2

male and 1 female subjects. In each sequence two different walk-

ers from the group of 3 subjects walked. There were altogether 7

different walking settings, which were repeated 10 times each. The

walking paths included different individual directional changes,

different starting and ending positions, and arbitrary entering and

leaving times. In addition, different interactions - meetings, fol-

lowings, and passing by situations - were experimented with. In

these data sequences the minimum distances between targets were

varied from 30 cm to 150 cm. Moreover, to test the proposed meth-

ods, one longer data sequence (1255 frames), which included non-

predefined walking paths and natural interaction, was performed

by 1 male and 1 female subject simultaneously.

5.2. Comparison of Algorithms

Table 1 presents a comparison of these 6 different particle filter-

ing methods using the 70 test sequences described above. Each

sequence was repeated 3 times to avoid random effects on initial-

ization and sampling of filters. The results are presented using two

different failure rates. First is sequence failure, which measures if

the tracker failed to keep the true identity, position, and the number

of targets through the whole sequence. These were observed man-

ually from the visualization of the tracking simulation. Second is

frame failures, which measures different failures in each frame.

These include position failure, which was set at 60 cm, similar to

the previous section. Identity and number of failures measure if

there are wrong identities (i.e., different than the two persons who

entered in the sensor area) and a wrong number of targets (i.e.,

different than one or two persons in these tests) detected. Addi-

tionally, total frame failures, which measures if at least one of the

three failure types (i.e., position, identity, or number of targets)

has occured at the particular time step, are given. The results in-

dicate that simple independent filters are not able to keep track of

multiple persons, but the target with the strongest measurements

and the best likelihood score will capture the nearby target. A

GP-based particle filter outperforms conventional particle filters,

showing better discriminative power, and GPJPF outperforms all

other methods, showing the best performance when joint state pre-

sentation, MRF motion model, and GP model are combined.

5.3. Discrimination Accuracy

Next we tested the discrimination accuracy of the different meth-

ods. We took 60 of the 70 sequences described above in which in-

teraction happened and calculated the minimum distance between

the targets in each sequence. We divided the sequences into dif-

ferent distance gaps and calculated histograms of discrimination

failures. The failure rates are calculated from these histograms.

Similar to the previous tests, these tests were completed 3 times



Sequence failures (%) Frame failures (%)

Method Samples Total Position Identity Number Total

IPF 50/target 57.14 15.18 6.00 7.18 16.58
GPIPF 25/target 52.86 13.65 5.10 6.92 15.28
MPF 50/target 12.38 0.37 0.37 0.87 1.11

GPMPF 25/target 8.57 0.21 0.25 0.28 0.48
JPF 100 9.05 0.04 0.00 0.47 0.51

GPJPF 50 3.81 0.09 0.00 0.06 0.12

Table 1. Tracking results of two persons using different methods. The smallest failure rates in each category are highlighted.
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Fig. 3. Failure rates of keeping track of two persons when the

distance between them changes.

in each sequence. Same model parameters from the previous ex-

periments were used. Figure 3 shows the failure rates when the

distance between persons is increased. GPJPF and IPF are most

accurate, showing failure rates below 8% when the distance is 30

cm - 55 cm. When the distance is more than 75 cm, both are able

track persons perfectly, showing 100% accuracy. GPJPF is slightly

better overall. The mixture filters perform with around 10% failure

rates and the independent filters are not accurate until the distance

is more than 90 cm, even then showing failure rates of more than

10%.

5.4. Influences of the MRF Model

Finally, the effect of the MRF motion model was tested by chang-

ing the interaction level. We compared the two best methods,

GPJPF and JPF, by changing the γ parameter. We used a long

data sequence of two simultaneously walking persons, including

a lot of interaction and small distances between persons. Each

method was repeated 5 times for each interaction level. Figure 4

shows the frame-based failure rates of the different γ parameters.

When γ = 0.0, the MRF is ignored. First the results show that

the MRF model is very important, and when it is totally ignored

the total failure rates are 79.6% and 55.6% for JPF and GPJPF, re-

spectively. Second, JPF is more sensitive to the lack of interaction,

showing that the GP-driven measurement model has more discrim-

inative power when the targets are physically close to each other.

Figure 5 shows some frames from the test data sequence when two

persons were tracked using GPJPF.

6. CONCLUSIONS

This paper proposed novel combination of algorithms for track-

ing persons. In the example application, binary switch floor sen-

sors were used to detect walking persons. The proposed tracking

algorithm is based on Gaussian Process (GP) regression learned

from the training data to predict the spatial displacement of the

tracked person, as well as on Particle Filtering (PF), which is used

to smooth the estimates and handle multi-modal distributions pro-

duced by the different types of foot contacts on the floor. Com-

pared with a conventional particle filter, no hand-tuned measure-

ment model (and noise variances) are needed; they are automat-

ically learned from the data using optimization of the marginal

likelihood in terms of noise variance and covariance hyperparame-

ters. These are important properties, because it is difficult to build

a measurement model that is able to model different variations in

sparse multi-modal measurements like in our floor sensor-based

application. In addition, the algorithm was extended to track mul-

tiple simultaneous walkers, handling a person entering and leav-

ing the sensor area, and to model interaction between persons,

which are both practically important when building real-life ap-

plications. The presentation is based on the Joint Particle Filter

approach, where each state represents the positions of all the cur-

rent walkers. The tracking and entering/leaving are handled using

GP and PF. The interaction, and more precisely the data associa-

tion, problem between adjacent targets is handled using a Markov

Random Fields (MRF) motion model by giving less weight to un-

certain particles on the overlapping area between persons. The

GP and MRF models as well as joint presentation can be applied

directly to the standard SIR particle filtering framework showing

superior tracking accuracy compared to conventional methods.
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(a) Position failures.
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Fig. 4. Tracking failure rates of different Markov Random Fields interaction levels.

(a) Frame 434. (b) Frame 445. (c) Frame 462.

Fig. 5. Data frames captured from a 1522-frame-long sequence when Gaussian Process Joint Particle Filtering is used to track two persons.
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