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Abstract. This paper describes daily life activity recognition usimgarable ac-

celeration sensors attached to four different parts of tiredn body. The experi-
mental data set consisted of signals recorded from 13 diffesubjects perform-
ing 17 daily activities. Furthermore, to attain more gehacévities, some of the
most specific classes were combined for a total of 9 diffeagtivities. Simple

time domain features were calculated from each sensorealdvar the recogni-
tion task, we propose a novel sequential learning methddctmabines discrim-
inative learning of individual input-output mappings wgisupport vector ma-
chines (SVM) with generative learning to smooth temporaktidependent activ-
ity sequences with a trained hidden Markov model (HMM) tyasition prob-

ability matrix. The experiments show that the accuracy effihoposed method
is superior to various conventional discriminative andegative methods alone,
and it achieved a total recognition rate of 94% and 96% shgl¥i7 and 9 differ-

ent daily activities, respectively.

1 Introduction

Activity recognition from wearable sensors has become guoitant research topic
in recent years [1], [2], [3]. Successful recognition of lbdsuman activities based on
sensing of body posture and motion can be used in differguicaions, such as health
care, child care and elderly care, as well as in personakagtmmonitoring. In addi-
tion, it provides a mechanism for using the activities totoolndevices around us, for
example to provide personalized services to assist thogephiysical disabilities or
cognitive disorders.

In this paper we present a novel method for activity recagmifrom wearable
sensors. It combines ideas from two major categories ofrsigeel machine learning:
discriminative and generative learning. Discriminatiearhing (e.g., kernel methods
[4], [5], [6]) provides an effective framework for learnimiirect input-output mapping
from a labeled training data seX(= (x1,... ,x,) andy = (y1,... ,yn), Wherex;
presents:th input feature vector angi; is i:th target class label) for particular appli-
cations, such as classification and regression to predictawn examples. However,
adapting a discriminative framework to more advanced legmproblems, such as cases
where input or/and output spaces can have a structure (amsegyfor example), is not
straightforward.



On the other hand, in generative learning methods, modefimdhole phenomena
that generate the data is not efficient, and the discrimiegtioperties are not modeled
very powerfully, for example, in classification tasks [8].[However, generative learn-
ing is easily extended to a structured domain and it is sléfal activity recognition, as
the sequential nature of adjacent class labels can be nibditdee, the idea that daily
activities usually vary smoothly is applied and it is motesly that the same activity
as the previous one is detected in a short time period. Meredvs useful to handle
transitions between activities differently, because stnaesitions more probably will
occur than others.

The most popular model of a generative learning categonséguential data is
HMMs [9]. Conventional HMMs are typically trained in a nomsdriminative manner,
as they are not able to discriminate between different ekagsry well. Another prob-
lem is that multi-dimensional input vectors cannot be uskdctly and overlapping
features are not allowed. The features have to be transtbime@ a sequence of dis-
crete symbols using some quantization, clustering orcspai-classifier method, or by
forming a continuous density model where each observaimtov is modeled using
some probability distribution, for example a Gaussian omig{9].

To overcome the problems of discriminative and generaéaening, we combine
them in a novel way. First, we train a discriminative modedj(eSVM) to predict con-
fidence of activity labels from individual multi-dimensiarinput vectors in time-series
sequences. Second, we use the conditional posterior glidpahtputs of a discrimi-
native learning algorithm as the input observation to a gative model. The generative
model has a HMM-type structure where observations are thaigied confidence mea-
surements of different classes from the discriminative @wobhen, a global transition
matrix is trained by the well-known forward-backward (FByaithm [9]. Here, the
temporal properties of different activities are modeled gmtlividual predictions in se-
qguence are smoothed to remove outliers. For example, ircthitasequence running,
running, bicycling, running, the bicycling activity can detected as an outlier. In the
classification stage, the most probable state (i.e., laggjuence is recognized using
Viterbi decoding [10]. This paper is an extension of the warl] where sensor settings,
data collection and feature selection along with clasdificaof independent activity
examples were studied. We use the same features calcutatiee previous study. In
addition, we compare our method with the earlier experimalung with other sequen-
tial learning methods, such as conventional HMMs and a SVIMMHcombination.

The rest of the paper is organized as follows. Section 2 pteselated work in
activity recognition by wearable sensors and sequentahleg methods and scenar-
ios. Section 3 describes the details of the methods and datesed in this paper and
section presents the experimental results. Finally, thhelasions of the work are given
in Section 5.

2 Redated Work

In ubiquitous computing, activity recognition has beeniseal using vision, audio, and
different environmental and wearable sensing devices [13]. To be able to recognize
the actions of an individual person related to everydaysasiie study of wearable



accelerometer sensors has become dominant in the fieldatlleaxomputing provides
personalized services [14], which can be utilized by mob@égices or in clothing to

assist in health care, fithess or work-related tasks, fomgk&a The use of wearable
acceleration sensors provides calm technology that ishggswmot as obtrusive for the

users compared with vision- and audio-based sensing.

The study of activity recognition using wearable sensossdmacentrated on prob-
lems from hardware setups and sensor placement to featuaeon and classification
methods. Activity recognition using wearable acceleraiensors attached to five dif-
ferent body parts was studied by [1]. Along with comprehemselated work in the
field, they present useful features for recognizing everytdivities and the important
aspect of the need of user-specific training data for someitges. An 84% accuracy
rate for 20 different activities was achieved using usereaated training data and a
decision tree classifier. [15] used cluster analysis to éxamvhich are the best features
and time window lengths for discriminating between differactivities. According to
them, different features, such as Fourier coefficients,nmnaad variance as well as
different window lengths, are needed in the recognition.

Different features and sensor positions were examined®yjding a single device
with a dual axis accelerometer and a light sensor. They rézed six primary activi-
ties: sitting, standing, walking, ascending stairs, dedig stairs, and running. To be
able to compute features in real time on a wrist watch-likafpim, they use only time
domain features and feature selection. Wrist position Wwasest when the subset of
features was optimized for it. In multiple sensor recogmifif17] studied the number
and placement of devices. Naturally, in recognizing déferactivities the position of
the sensor for a particular activity is important (e.g.,éo&and upper body motion when
walking, upper body when typing with a keyboard).

The sequential nature of activity data has been considafsd, The most popu-
lar method is generative HMMs or related methods. Staticdymémic hand gestures
of a mobile user were studied by [18] using acceleration @snaith self-organized
maps (SOM) and HMMs. [19] combined vision and acceleronsetad recognized the
gestures of sign language using HMMs. Different daily atiég, such as sitting, stand-
ing, walking, running, climbing stairs, and bicycling, werecognized by [20]. They
combined unsupervised clustering (SOM) with supervisedniag (k-nearest neigh-
bors) and sequential modeling (Markov chain). [3] presgmiethods for recognizing
assembly and maintenance work activities by hand motionaatidities using an ac-
celerometer and a microphone. Their case study of a woodshiogkassembly task
uses analysis of sound intensity detection to segmentlsigaad the classification is
performed by the fusion of linear discriminant analysisugsd) and HMMs (accelera-
tion sensors).

In activity recognition, a study most similar to our work iepented in [2]. It uses
discriminative learning of multi-dimensional input-outpmapping and feature selec-
tion of individual examples using boosting, which is themmtined with HMMs to
capture temporal properties. Compared with our approahlghauses a global transi-
tion probability matrix between activities, they trainediagle HMM for each activity
where a transition matrix models inner-class hidden stati&tion. They used a single
sensor board equipped with an accelerometer, a microptwaodight sensors, baro-



metric pressure, humidity, and temperature sensors, aothaass, and they initially
extracted over 600 features. [21] applied another diso@dtiie sequential learning ap-
proach to physiological activity data using conditionaldam fields. In classifying a
physical activity (watching TV or sleeping) based on ninffedlent sensor measure-
ments, the method showed more accurate results compartedaevitsequential meth-
ods, which only use information from individual input vergoln a different application
area [22], support vector machines and temporal smoothérg wsombined to classify
audio sequences, which uses methodology quite similarr® blowever, they only ap-
plied it to a binary classification domain to detect speeahran-speech components
from a video soundtrack, and they used a more ad-hoc techn@transform SVM
outputs into confidence values for temporal modeling coembarith our approach.

More generally, the idea of combining discriminative anaigative learning has
been studied much recently, mostly in the fields of natunagjleage processing and
computational biology. [23] give an overview of learningjaential data from simple
sliding window techniques to generative methods such as KHMad well as discrim-
inative sequential methods, e.g., maximum entropy Markedeis and conditional
random fields (CRF), which overcome some of the HMM's prolderhfeature pre-
sentation and non-discriminative learning with more exgdentraining. Additionally,
kernel methods have been extended to sequential data thkewgel design [24], and
structured learning of support vector machines [25] andsSian process classifica-
tion [26], which utilize the idea of HMMs and CRFs in dynamimgramming style
optimization and inference. Jebara [7] presents a framefasrincluding generative
models (e.g., HMMSs) in large margin discriminative leagirsing maximum entropy
discrimination.

Fig. 1. Wearable sensor devices used in these experiments.



Fig. 2. Attachment of sensor devices to the wrist.

3 System for Sequential Learning of Activities

3.1 Activity Data Set and Feature Extraction

In this paper we used the data set collected in [11]. It inetudctivities recorded from
13 different subjects wearing four sensor nodes, which atteehed to different parts
of the body: the right thigh and wrist, the left wrist and a kiace. Each sensor node
has a triaxial accelerometer that is sampled 64 times at Pl@20dnd the average values
are sent every 100 msec to a data collecting terminal. Theab&asensor is presented
in Figure 1, and the attachment of the sensor to the wridistibted in Figure 2. The
sensor was developed by the Nokia Research Center, Tokgollaboration with the
Distributed Computing Laboratory of Waseda University.

As presented in [11], each subject performed a sequence ddily7activities and
annotated the starting and ending time of each activityguaitouch screen or a wear-
able interface, depending on whether the particular agtivas performed inside or
outside. Each activity took at least one minute and altagedlier 8 hours of data were
collected. The 17 activities incluaéeaning a whiteboardeading a newspapestand-
ing still, sitting and relaxingdrinking, brushing teethsitting and watching TMying
down typing vacuum cleaningwalking, climbing stairs descending stairgiding an
elevator upriding an elevator dowyrunning, andbicycling Furthermore, some of the
activities were combined into a single class, producingta get of 9 general activities:
cleaning standing sitting, using stairs brushing teethlying down walking, running,
andbicycling Thedrinking activity was left out because of its multimodal nature {i.e.
the subjects were sitting or standing, etc.). Example #ietivin the data set are shown
in Figure 3.

[11] tested different features and time windows and theynébout that using a
short time window (e.g., 0.7 - 1 second) with simple featitke mean and the stan-
dard deviation) gave the most accurate recognition ratethi$ study, we also use a



0.7 second window and the mean and the standard deviationlagd from all 3 ac-
celeration channels of each sensor device, providing hdbgal features in every time
step. The use of such simple features is justified in an agic where only limited
computational resources are available and a relativelyt sinoe window is applied to
achieve a real-time response.

(a) Sitting and reading newspa- (b) Walking.
per.

Fig. 3. Example activities performed by the subjects.

3.2 Discriminative Learning of Static Examples: SVM approach

Discriminative learning is a very effective way to train npapgs from multidimensional
input feature vectors to class labels. Kernel methods itiquéar have become state-of-
the-art, due to their superior performance in many realdvearning problems, clear
mathematical foundations and generalization capalsilltigsed on statistical learning
theory.

In this study, we use the popular support vector machined)§27] as base classi-
fiers in our recognition system. The SVM method has many &erproperties such as
good generalization by finding the largest margin betweassels, the ability to handle
non-separable classes via soft-margin criteria, noratibemodeling via explicit kernel
mapping, sparseness by presenting data using only a snmablenof support vectors,
and global convex optimization with given hyperparametEest optimization and a
sparse solution are very important in building real-timstegyns with large-scale data



sets. Training can be done effectively, for example by useguential minimization
optimization [28]. After training, an unknown exampf¢x) in a binary classification
case can be labeled as follows,

= Z yiik(x,%;) + b 1)

i€ESV

whereq; is a non-zero Lagrange multipliay; is the class label of the training set,
k(x,x;) is kernel mapping between an unknown exampénd a training example;,
andb is the bias of the learned solutiafil” represents the group of support vectors.

One drawback of SVM is that it is directly applicable only ima:-class problems.
Thus, there have been different attempts to generalizeniutti-class classification.
The simplest and most popular methods are based on multimeytclassifiers using
one-vs-one or one-vs-rest approaches as well as errorctiogeutput codes and di-
rected acyclic graphs, to name a few [5]. We apply the onenesstrategy due to its
simplicity, its good performance in practice, and its calighof extended hard deci-
sions to output confidence values using different postgssing methods. Next, we
present algorithms that are able to produce posterior pibities from binary SVM
outputs and combine them into a multiple class classifinatio

SVM cannot directly give a confidence measurement as an puipugives only
a decision as an unscaled distance from the margin in feapaee. However, [29]
proposed a very useful method for getting probabilistiqatg by performing another
mapping function from the raw outputs to class probabditiEhis is calculated through
a parametric sigmoid function, as follows

1
1+ exp(Af(x) + B)

The parametersl and B are found by minimizing the negative log-likelihood of the
validation set

Py =1]f(x)) =

()

N
min Z: (t;log(P(y = 1/f(x:))
+ (1 —t;)log(1 — P(y = 1|f(x1))))), 3)

where

. { N fyi=1
N1 if Yi = -1
N is the number of positive class labels aNd presents the negative ones.

Based on one-vs-one classification, pairwise coupling {#&)method of combin-
ing multiple two-class probabilities to obtain multi-ctasstimates for C classes. The
method was proposed by [30] and extended by [31].7gbe the probabilistic out-
put of the classifier, obtained, e.g., using Platt's mettzodip; be the probability of
thei:th class. Also, lep; be presented by auxiliary variables; = p;/(p; + p;). To



estimate the values @f, the Kullback-Leibler divergence betweepy andy;; can be
determined as follows

(D) = 3 iy (riy log T + (14 1) log ——10) @

i<j Hij B

where the weight;; is the number of examples of classesd; in the training set. The
weightsn;; can be set equal to one if there is no significant differen¢eden class
sizes. Minimizing the function in Eq. 4, can be computed gsin iterative method
[30]. Finally, p; presents the conditional probabilify(c;| f(x)) of recognizing class
i. For example, [32] achieved encouraging multi-class diaation results using the
methods described above.

3.3 Temporal Smoothing of Sequences

Regardless of SVM's capability of classifying independieand identically distributed
(i.i.d) data as presented in the previous subsection, dtidinectly applicable to sequen-
tial data, such as activities where the data are rather dememn the neighborhood
labels. This subsection presents a general algorithmitotemporal smoothing to the
confidence valued outputs of a discriminative (or genegatilassifier trained on static
independent examples.

The learning of sequential input-output pairs has usuadlgrbdone with hidden
Markov models (HMM) [9], which are generative graphical retsdwith a Markov
chain structure. HMMs have some limitations compared wenkl-based methods:
they are trained in a generative manner (e.g., one modes)ctdney have some condi-
tional independence assumptions, they need explicit feqitesentation (e.g., suffer-
ing from the curse of dimensionality), and they cannot hamdkrlapping features. To
overcome the limitations of HMMs, many discriminative \aris have been proposed,
including different discriminative training algorithmrfélMMs (see section 2 for some
of the related approaches).

We propose a simple algorithm that combines discriminativati-class learning
with generative smoothing of activity sequences, namedtidignative temporal smooth-
ing (DTS). DTS is a general algorithm in which you can use aagebclassifier that
produces confidence output measurements. However, weed®\YM due to its ac-
curate and efficient sparse solution. Once we have traire®¥M classifiers on the
static examples and mapped them to confidence values, w@phntemporal smooth-
ing. First, the probabilistic outputs of the static classifrom the training set is used
as an observation input to estimate a global transitionaisity between class labels.
Let P(ci|f(x1)), P(ck|f(x2),...,P(ck|f(x:) be a sequence of conditional posterior
probabilities of clasg from the beginning of the sequence to a time steptimated by
SVMs and pairwise coupling. We collect these confidenceasftom every class to
observation matriB as follows

P(C1‘f(xl) P(C]‘f(xg) P(c]‘f(xt
P(co|f(x1) P(ea|f(x2) ... P

()

Plex|f(x1) Plex f(x2) ... Plexlf(xe)



Then, a global transition matrik with transition coefficients;; = P(c! \c?”) (the
probabilities between different classeand; from the timet — 1 to t) is calculated. The
transition coefficients can be estimated with an iteratorevbrd-backward algorithm,
well-known from HMM training [9], over the observation miatrFinally, an unknown
sequence can be labeled from coupled probabilistic SVM denfie outputs with the
use of a transition probability matrix and a Viterbi alghrit [10], resulting in smoothed
class probabilitiesky(ci. ¢|f(x:)) = Pulea| f(xe)), Palea f(x0)), . ., Pale| f(xe))
for examplex at timet). The final classification is made by choosing the most prigbab
class from the smoothed confidence values, agmax|[Ps(c1.. x| f(x¢))]. A diagram
of different stages of the proposed activity recognitiosteyn based on DTS is pre-
sented in Figure 4.

If1(x1), 2 f1(xe) P(c1 x1). ..., P(ey|xg)

P(eylx1), ..., Pleylxg) Ps(clx1), ..., Ps(e1lxe) argmax
. .

Falx1). .o falxe) Peglx1), ..., Plealxg)

aGe), o faGxe) [{P(ealxa), o Plealxe) Pleglxa). o Pleglxe) P (calxa), o Po(eplxe)

R T T T

Fm(x1), - fm (xe 2| Plemlx1), -0 Plemlxg))

FEATURE EXTRACTION SVMPREDICTION  PROBABILITY OUTPUTS PAIRWISE COUPLING TEMPORAL SMOOTHING  OUTPUT ¢
(m pairwise classifiers)

Fig. 4. Example diagram of the building blocks of a system for leagrio recognize sequential
activities.

4 Results

This section presents the results of our experiments usiaglata sets of 17 and 9
activities, respectively. Both data sets consist of tha datL3 subjects. We removed 5
examples (i.e., 3.5 seconds) from the beginning of eachigctiue to outliers caused
by the subject moving from the labeling screen to a spot,(elgte board) to perform
the particular activity. To compare our results with presavork by [11], we use a
similar testing scheme, i.e., we presented the test ragiiligour-fold cross-validation
(i.e., we used independent test data sets not used fomgdirin addition, we compare
the proposed method with conventional SVM and HMM classifees well as a SVM-
HMM combination quite similar to the approach presenteddjyflowever, they use a
different discriminative method (i.e., ADABoost) as thesbalassifier.

For each data set we trained the ensemble of one-vs-one Safdifaers (Eq. 1)
with radial basis function (RBF) kernel(x,x') = exp(—(1/20?)||x — x'||?)).
The regularization penalty terti = {0.5, 1, 10, 100} and kernel hyperparameter=
{0.6,0.8,1.0, 1.5, 2} were found using four-fold cross-validation over the thagndata



sets. Furthermore, the parameters of sigmoid mapping (Bgetz estimated by cross-
validation of each binary classifier. Pairwise classifieexenfinally coupled to give
confidence values for each class (Eq. 4). These conditiomdlapilities were used
as an input to different methods: SVM-HMM and DTS, respetyivThe structure of
HMM (in conventional and SVM-HMM methods) included thredtén states, and the
observation probability distributions were presentedgs two-component Gaussian
mixture model with a diagonal covariance matrix. A single MWas trained for each
class using five consecutive examples in a sliding window,this sequence was clas-
sified as the highest likelihood value among the models. Tbaats were implemented
in a Matlab environment. The SVMs were trained using a Spiolelbox [33] with a
libSVM optimizer [34], and the HMMs were trained using the WMWMatlab toolbox
[35].

4.1 Recognition Results

Table 1 presents the total recognition accuracies of 1viae$ using different classifi-
cation methods as well average precision (true positivs(positive + false positive))
and recall (true positive/(true positive + false negadiw@lues. The proposed method
surpassed all other methods, presenting a 93.6% total méaograte. Additionally,
these experiments show the usefulness of the discrim:&¥M classifier, as it gives
superior accuracy compared with HMM, which is not able to sl@chigh-dimensional
input space accurately. Using the SVM-HMM combination giaeslightly better recog-
nition rate compared with plain HMM, but it is not as effeet&s presented by [2]. This
is related to the fact that besides accelerometers, theldifferent sensors and features
such as audio, which usually includes a lot of temporal dyinanm intra-class varia-
tions. In addition, they used a much larger sliding windovextract features in which
the usefulness of modeling the hidden dynamics of a sindleityds justified. In our
experiments, a simple global transition probability snimireg machine works well with
simple statistical features and a small sliding window.

Table 1. Total recognition accuracies as well as average precisidmexall values of 17 activities
using different methods

SVM HMM SVM-HMM DTS

Accuracy (%) 90.65 (4.53) 84.26 (4.66) 84.39 (5.65)  93.58 (4.15)
Precision (%) 88.00 (4.68) 75.69 (3.04) 77.82(5.36)  93.88 (3.69)
Recall (%) 87.74 (3.21) 79.74 (3.76) 81.17 (3.90)  90.58 (3.55)

Table 2 presents the total recognition accuracies of 9iieswsing different clas-
sification methods as well average precision and recallegalalso, in this case the
DTS method outperformed the other methods, showing a 96ut#ess rate. Similar
conclusions can be made with a data set of 17 activities.



Table 2. Total recognition accuracies as well as average precisidmecall values of 9 activities
using different methods

SVM HMM SVM-HMM DTS
Accuracy (%) 94.15 (2.62) 88.75 (2.93) 90.42 (4.75)  96.36 (2.13)
Precision (%) 92.12 (2.98) 82.32 (4.50) 85.77 (3.14)  96.76 (2.06)
Recall (%) 92.10 (1.80) 86.77 (3.74) 87.89 (7.20) 9453 (1.05)

Finally, we examined the individual activities in the datd ef 9 activities. Table
3 presents an example confusion matrix of a total number 664dst examples of 9
activities performed by 13 subjects recognized by a DTSrélguo. All the activities,
except using stairs, are recognized at over a 90% succesauiare the most distin-
guished ones arssitting, walking running, andbicycling Theusing stairsactivity is
naturally most often confused withalking which is not the case the other way around.

Table 3. Confusion matrix of recognizing 9 different activities it discriminative temporal
smoothing algorithm

% |c|ean sit stand use stairs brushteeth liedown walk run cycle
clean 943 15 1.2 0.0 0.0 0.0 24 0.0 0.6

sit 00 994 04 0.0 0.0 0.0 0.2 0.0 0.2
stand 3.1 2.6 941 0.0 0.2 0.0 0.0 0.0 0.0
use stairs| 0.0 0.0 0.0 70.9 0.0 0.0 29.1 0.0 0.0
brush teeth 1.7 0.7 0.0 0.0 97.2 0.4 0.0 0.0 0.0

lie down 3.4 3.4 0.0 0.0 0.0 92.7 0.0 0.0 0.5
walk 00 0.0 0.0 0.2 0.0 0.0 998 0.0 0.0

run 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
cycle 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.6

In comparison, using the same data sets and features, tharkat neighbor classi-
fier used by [11] gives total recognition accuracies 89.42%4) for the data set of 17
subjects and 93.02% (2.64) for the data set of 9 subjecisectisely. In both dataset it
is more accurate than the HMM and SVM-HMM methods, but DT$ alstperforms

those methods.

5 Conclusions

We presented a novel approach to activity recognition byrada sensors. The pro-
posed algorithm combines effective discriminative cliésasiion with a smoothing of
adjacent class label estimates in an activity sequencetilitg recognition, it is very



useful to extend conventional i.i.d data assumption-batzskifiers to the sequential
learning domain to be able to take advantage of the smootiiagges of the targets
and the probabilities of transition between different\atiés.

We used a SVM classifier to recognize individual activity mydes, which were
then mapped to class confidence values. At the post-procestsige we trained a global
transition probability matrix from the confidence valueghgsa forward-backward al-
gorithm. Final classification was then performed with thafatence values and the
transition probability matrix using a Viterbi algorithm.

Using a data set of 13 subject performing 17 daily activjtieswere able to achieve
a total accuracy of 94%. In addition, we combined some of thetrapecific classes to
present more generic activities, which led to 9 activitielse data set of combined ac-
tivities gave a recognition rate of 96%. Our results indidhtt the proposed algorithm
is able take advantage of the sequential nature of actitg,dshowing superior per-
formance compared with typical non-sequential (standaflSand sequential (stan-
dard HMM) classifiers. The accurate recognition of humaiviiets can provide useful
knowledge for different applications in the ubiquitous garting field.

The method proposed in this paper is general. It is not oésttito SVM-based
classifiers but applies to any method that is able to produocleabilistic outputs. For
example, Gaussian process classification leads natualbyababilistic class confi-
dence values compared with the more ad-hoc method used With B addition, the
cross-validation can be replaced by Bayesian model sefestrategies. This is one
possible direction for future research. Furthermore, i $tudy we used a data set that
was collected in a semi-naturalistic manner, i.e., theettbjperformed and labeled
the activities in a predefined order to minimize possibléudizance. Using a data set
where the activities are performed in a more naturalistideqgre.g., sitting-standing-
walking, the sequential method is more advantageous thawveational methods due
to its ability to place importance on more probable traosgi between activities in
real-life sequences.
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