CODE PARAMETERS OF OPTIMIZED PN CODE SETS

 

This page gives the irreducible connection polynomials of the linear feedback shift-register generators of optimized PN code sets in octal form. Polynomials are taken from Table C.2 in Appendix C of the book: W.W. Peterson & E.J. Weldon, "Error-Correcting Codes", The MIT Press, Cambridge, Massachusetts, USA, 560 p., 1972.

In the case of m-sequences note that the second half of each code set is generated using the resiprocal feedback polynomials of the first half of a code set, i.e. codes having order numbers from N/2+1 to N are time-reversed resiprocals of codes having order numbers from 1 to N/2 in the code matrix (in an optimized initial-phase, of course), where N is the total number of sequences in a set.

The sets of Gold and Kasami sequences do not contain resiprocals. Codes were generated by changing the modulo-2 summation phase of several linear component code generators. A small Kasami set always contains as the last sequence the longer m-sequence from which the set was generated. Also, in the case of Gold codes of lengths 31, 63 and 127 the last two codes in a code matrix are the sequences corresponding the preferred pairs.

 

1. Maximum-Length Sequences 

1.1 Codes of Length 15

Feedback polynomials in the successive order of rows of the code matrix:

23, 31.

 

1.2 Codes of Length 31

Feedback polynomials in the successive order of rows of the code matrix:

45, 75, 67, 51, 57, 73.

 

1.3 Codes of Length 63

Feedback polynomials in the successive order of rows of the code matrix:

103, 147, 155, 141, 163, 133.

 

1.4 Codes of Length 127

Feedback polynomials in the successive order of rows of the code matrix:

211, 217, 235, 367, 277, 325, 203, 313, 345,

221, 361, 271, 357, 375, 253, 301, 323, 247.

 

1.5 Codes of Length 255

Feedback polynomials in the successive order of rows of the code matrix:

435, 551, 747, 453, 545, 543, 537, 703,

561, 455, 717, 651, 515, 615, 765, 607.

 

1.6 Codes of Length 511

Feedback polynomials in the successive order of rows of the code matrix:

1021, 1131, 1461, 1423, 1055, 1167,

1541, 1333, 1605, 1751, 1743, 1617,

1553, 1157, 1715, 1563, 1713, 1175,

1725, 1225, 1275, 1773, 1425, 1267,

1041, 1151, 1063, 1443, 1321, 1671,

1033, 1555, 1207, 1137, 1437, 1707,

1533, 1731, 1317, 1473, 1517, 1371,

1257, 1245, 1365, 1577, 1243, 1665.

 

1.7 Codes of Length 1023

Feedback polynomials in the successive order of rows of the code matrix:

2011, 2415, 3771, 2157, 3515, 2773, 2033,

2443, 2461, 3023, 3543, 2745, 2431, 3177,

3525, 2617, 3471, 3323, 3507, 3623, 2707,

2327, 3265, 2055, 3575, 3171, 2047, 3025,

3337, 3211, 2201, 2605, 2377, 3661, 2627,

3375, 3301, 3045, 2145, 3103, 3067, 2475,

2305, 3763, 2527, 3615, 2347, 3133, 3427,

3117, 3435, 3531, 2553, 2641, 2767, 2363,

3441, 2503, 3733, 2213.

 

1.8 Codes of Length 2047

Feedback polynomials in the successive order of rows of the code matrix:

4005, 4445, 4215, 4055, 6015, 7413,

4143, 4563, 4053, 5023, 5623, 4577,

6233, 6673, 7237, 7335, 4505, 5337,

5263, 5361, 5171, 6637, 7173, 5711,

5221, 6307, 6211, 5747, 4533, 4341,

6711, 7715, 6343, 6227, 6263, 5235,

7431, 6455, 5247, 5265, 4767, 5607,

4603, 6561, 7107, 7041, 4251, 5675,

4173, 4707, 5463, 5755, 6675, 7655,

5531, 7243, 7621, 7161, 4731, 4451.

 

1.9 Codes of Length 4095

Feedback polynomials in the successive order of rows of the code matrix:

10123, 15647, 16533, 16047, 11015, 14127,

17673, 13565, 15341, 15053, 15621, 15321,

11417, 13505, 13275, 11471, 16237, 12515,

12255, 11271, 17121, 14227, 12117, 14135,

14711, 13131, 16521, 15437, 12067, 12147,

14717, 14675, 10663, 16115, 12247, 17675,

10151, 14613, 11441, 10321, 11067, 14433,

12753, 13431, 11313, 13425, 16021, 17025,

15723, 11477, 14221, 12705, 14357, 16407,

11561, 17711, 13701, 11075, 16363, 12727.

 

 

2. Gold Sequences

2.1 Codes of Length 31

Polynomial 1: 45

Polynomial 2: 75

 

2.2 Codes of Length 63

Polynomial 1: 103

Polynomial 2: 147

 

2.3 Codes of Length 127

Polynomial 1: 211

Polynomial 2: 217

 

2.4 Codes of Length 511

Polynomial 1: 1021

Polynomial 2: 1131

 

2.5 Codes of Length 1023

Polynomial 1: 2011

Polynomial 2: 2415

 

2.6 Codes of Length 2047

Polynomial 1: 4005

Polynomial 2: 4445

 

 

3. Small Set of Kasami Sequences

3.1 Codes of Length 15

Polynomial 1: 23

Polynomial 2: 7

 

3.2 Codes of Length 63

Polynomial 1: 103

Polynomial 2: 15

 

3.3 Codes of Length 255

Polynomial 1: 435

Polynomial 2: 23

 

3.4 Codes of Length 1023

Polynomial 1: 2011

Polynomial 2: 75

 

3.5 Codes of Length 4095

Polynomial 1: 10123

Polynomial 2: 141

 

 

4. Large Set of Kasami Sequences

4.1 Codes of Length 15

Polynomial 1: 23

Polynomial 2: 37

Polynomial 3: 7

 

4.2 Codes of Length 63

Polynomial 1: 103

Polynomial 2: 147

Polynomial 3: 15

 

4.3 Codes of Length 255

Polynomial 1: 435

Polynomial 2: 675

Polynomial 3: 23

 

4.4 Codes of Length 1023

Polynomial 1: 2011

Polynomial 2: 2415

Polynomial 3: 75

  

4.5 Codes of Length 4095

Polynomial 1: 10123

Polynomial 2: 13311

Polynomial 3: 141